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Abstract

Recently, Video Question-Answering (VideoQA) has
drawn more and more attention from both the industry and
the research community. Despite all the success achieved
by recent works, dataset bias always harmfully misleads
current methods focusing on spurious correlations in train-
ing data. To analyze the effects of dataset bias, we frame
the VideoQA pipeline into a causal graph, which shows
the causalities among video, question, aligned feature be-
tween video and question, answer, and underlying con-
founder. Through the causal graph, we prove that the con-
founder and the backdoor path lead to spurious causality.
To tackle the challenge that the confounder in VideoQA
is unobserved and non-enumerable in general, we pro-
pose a model-agnostic framework called Knowledge Proxy
Intervention (KPI), which introduces an extra knowledge
proxy variable in the causal graph to cut the backdoor
path and remove the effect of confounder. Our KPI frame-
work exploits the front-door adjustment, which requires no
prior knowledge about the confounder. The effectiveness
of our KPI framework is corroborated by three baseline
methods on five benchmark datasets, including MSVD-QA,
MSRVTT-QA, TGIF-QA, NExT-QA, and Causal-VidQA.

1. Introduction

In recent years, Video Question-Answering (VideoQA)
has drawn more attention from the industry and research
community due to its essential role in interactive artificial
intelligence and recognition science. In VideoQA, there are
three crucial challenges, (1) how to capture the visual clues
in the video (e.g., object, action, and causality), (2) how to
parse the semantics and syntax in language, and (3) how to
align the visual clue with the linguistic semantics and syn-
tax. Therefore, lots of works [12, 25, 22, 62, 35, 34, 5] have
studied the VideoQA from these three aspects, and have also
achieved great success in both open-ended VideoQA [66,
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Figure 1. Two examples show how dataset bias affects the answer.
The biased answer is generated by HQGA [62]. Green and red
denote the ground-truth and the biased answer for each question.

24] and multi-choice VideoQA [24, 61, 32].
As the core of VideoQA, video (V), question (Q), and

the aligned feature between video and question (aligned fea-
ture for short, H) play essential roles in predicting answer
(A). However, due to dataset bias, most of existing meth-
ods, which target at predicting answers directly from the
observational probability P (A|V,Q,H), will be inevitably
misled to spurious correlation, and have trouble in revealing
the causal relation between the V ,Q,H, andA. In Figure 7,
we show two examples to explain how dataset bias affects
the answer prediction. For example, in Figure 7 (a), since
the kangaroo can rarely appear indoors, the model would ig-
nore the “unique jumping pose” and the “distinct wobble of
tail” from the kangaroo, and regard it as a cat. Furthermore,
dataset bias is from nature (Zipf’s law [60] and social con-
ventions [19]), i.e., more cats are indoors, and more kanga-
roos are outdoors. Therefore, simply enlarging the dataset
would never eliminate dataset bias. To this end, we focus
on dataset bias in VideoQA task and exploit the concepts of
confounder to analyze and alleviate this problem.

The causal graph of the VideoQA pipeline is illustrated
in Figure 2 (a), where V,Q,H,A, and C represent video,
question, aligned feature, answer, and confounder, respec-



Figure 2. The causal graph and causal intervention for VideoQA.

tively. V → Q indicates that the question is proposed based
on the video. V →H←Q indicate that the video and ques-
tion generate the aligned feature. Q→A←H indicate that
the answer is predicted based on the question and aligned
feature. Confounder is a series of correlated concepts
that appears simultaneously in the video, e.g. “jump;run”,
“shoot;run”. Since the question and answer are both pro-
posed based on video, we also regard the confounder as the
result of video (V → C), which controls the correlation be-
tween question and answer (Q← C → A). To quantify the
effect of confounder, we collect the objects, actions from
videos, and nouns, verbs, and adjectives from questions as
video and question concepts. Then, we calculate the condi-
tional probability of answers given question and video con-
cepts, and show some examples in Figure 3. Due to the ex-
istence of confounder, like the co-occurence “guitar;man”,
apart from the legitimate path fromQ andH toA, the back-
door path Q ← C → A and H ← Q ← C → A also affect
answer prediction. Since P (man|guitar) is dominantly
more than P (woman|guitar) for training instances, then
P (A|V,Q,H) based on video with “guitar” tends to score
“man” much higher than “woman”. Therefore, if we only
focus on observational probability P (A|V,Q,H) without
considering the effect of confounder, the model will in-
evitably be misled by dataset bias.

To remove the effect of confounder, we exploit
the do-calculus [42] to actively intervene the value of
V,Q,H, where we have two choices, the backdoor adjust-
ment (Section 3.2) and the front-door adjustment (Sec-
tion 3.3). Backdoor adjustment [56, 48, 34] is widely
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Figure 3. The conditional probability of answers given question or
video concepts in MSVD-QA. Since the distribution of the condi-
tional probabilities is wide, we use logarithmic axis. Only several
examples are visualized to avoid clutter. Best viewed by zoom-in.

used in causal intervention for its intuitive formulation,
i.e., P (A|do(V,Q,H)) =

∑
c P (A|V,Q,H, c)P (c) (Fig-

ure 2 (b)). However, the backdoor adjustment requires con-
founder to be observable and enumerable, which cannot be
implemented in VideoQA. Therefore, we implement causal
intervention with front-door adjustment by introducing
an intermediate variable, the knowledge proxy Z , in the
causal graph, where no prior knowledge for confounder
is required. The front-door adjustment decomposes the
causal intervention into two parts (Figure 2 (c)), i.e.,
P (A|do(V,Q,H)) =

∑
z P (z|do(V,Q,H))P (A|do(z)).

The intermediate variable Z in Figure 2 (c) is the proxy
to Q and H, which should summarize the information of
question (Q), and aligned feature (H) and cover the knowl-
edge for answer prediction. Towards this end, we name our
framework as Knowledge Proxy Intervention (KPI) frame-
work, which is a model-agnostic framework for the causal
inference of VideoQA and aims to alleviate the effects
of dataset bias. Note that some works [35, 34] also ex-
plore dataset bias from the aspect of complement frame and
causal frame, i.e., whether the frames in the video are re-
lated to question answering. However, the frame-level bias
is only one kind of dataset bias, and even in the causal scene,
there is still dataset bias, as shown in Figure 7. In this way,
our KPI framework is fundamentally different from exist-
ing causal VideoQA methods [35, 34], which are domain-
specific and comply with observed-confounder assumption.

In this paper, we propose KPI framework, an implemen-
tation of front-door adjustment, which is model-agnostic
and can help current methods to mitigate spurious corre-
lations from dataset bias. In particular, given that knowl-
edge proxy and its representation are not pre-defined, we
propose a series of practical approximations in Section 4.
The effectiveness of KPI framework is corroborated by
comprehensive experiments with three baseline methods
(CoMem [12], HGA [26], and HQGA [62]) on five bench-
mark datasets (MSVD-QA [65], MSRVTT-QA [65], TGIF-
QA [24], NExT-QA [61], and Causal-VidQA [32]). Our
main contributions are summarized as follows:



• We focus on dataset bias and provide a thorough anal-
ysis of how dataset bias affects the answer prediction
using the causal graph.

• To alleviate the effect of dataset bias, we exploit front-
door adjustment and propose our model-agnostic KPI
framework to implement the causal intervention.

• Comprehensive experiments with three baseline meth-
ods on five benchmark datasets reveal that our frame-
work significantly boosts the state-of-the-art methods.

2. Related Work
2.1. Video Question Answering

VideoQA, as the core of visual-language representa-
tion [31, 14, 30, 3, 37, 4] and reasoning [39, 69, 35,
34], aims to answer the question based on dynamic vi-
sual content. To this end, the VideoQA benchmarks start
from the problem of description [66, 24, 29] and then
build more challenging datasets towards temporal reason-
ing [6], physical reasoning [71], evidence reasoning [61],
and commonsense reasoning [32]. Although the architec-
ture of VideoQA methods has changed significantly in re-
cent years, the core of VideoQA methods is still video
representation, question representation, and video-question
aligned representation. For video representation, early ef-
forts [24, 12] usually exploit the appearance feature [18]
and motion feature [64] along with Recurrent Neural Net-
work (RNN) [20] or Transformer [54]. As the development
of object-level representation, MIN [27] and MASN [51]
introduce the bounding-box feature into video representa-
tion. For question representation, most existing works uti-
lize word embedding [47] along with RNN. As the improve-
ment of pre-trained language model, BERT feature [8] is
exploited by NExT-QA [61] and then becomes widely used
in recent works [62, 35, 34, 63]. For video-question aligned
representation, early efforts tend to implement alignment
through cross-modal attention [33, 13] or memory net-
work [12, 9]. As the graph models are introduced into
VideoQA, graph reasoning [22, 26, 40, 38, 15, 55, 5] is
explored more in video-question alignment. Recently, the
natural hierarchical structure [28, 16, 45, 7, 46] of video,
i.e., object-appearance-motion and appearance-motion, also
draws more and more attention. Among them, HCRN [28]
proposes conditional relation block and stacks it to cap-
ture information from different video intervals, whereas
MSPAN [16] establishes cross-scale feature interaction on
top of the hierarchy. HQGA [62] and VGT [63] align ques-
tion and video hierarchy from low-level visual entities to
high-level activities.

Some works also look into the scene bias [35, 34] or
atemporal VideoQA [2], which focuses on the observed and
enumerable bias. Unlike them, we are the first to study

dataset bias in VideoQA from a general viewpoint and re-
quire no prior knowledge about the confounder.

2.2. Causal Inference

Causal inference [43, 50] provides us with a powerful
tool to analyze the dataset bias and mitigate spurious corre-
lations, which can be divided into deconfounding [57, 73,
70, 69, 36] and counterfactual inference [10, 74, 58, 39].
Besides, it has been used in various learning tasks, including
image classification [57], image segmentation [73], image
caption [70, 36], image question answering [39], language
understanding [10], dialogue system [74], and recommen-
dation system [58], which not only enables deep learning
methods with the ability to learn causal effects but also
boosts the performance of current methods. The generic
way is to disentangle all variables in the target task and
model the causal effects among variables on causal graph.

Some works also study front-door adjustment [70, 69],
which focus on either description towards image [69] or
confounding effect within models, like Transformer [70].
Different from them, we focus on description, evidence rea-
soning, and commonsense reasoning towards video and are
the first to apply front-door adjustment to mitigate the spu-
rious correlations within dataset bias in VideoQA.

3. Causal Intervention
In this section, we introduce the concepts of causal in-

ference [41, 44], including the confounder (Section 3.1),
the backdoor adjustment (Section 3.2), and the front-door
adjustment (Section 3.3). In the following sections, we use
boldface lower letter, (v,q,h, z), to represent the feature
vector, boldface capital letter, (V,Q,H,Z), to represent the
feature space, and the calligraphic letter, (V,Q,H,Z), to
represent the variable in the causal graph. More background
and detailed derivation are in Supplementary Material.

3.1. Confounder

The observational probability can be formulated as

P (A|V,Q,H)=
∑
c

P (A|V,Q,H, c)P (c|V,Q,H), (1)

where c is the split of the confounder, like the environment
or the action. During training, it is much easier for current
methods to recognize some of the video and question con-
cepts, and ignore the characteristic of other video and ques-
tion concepts. Therefore, during inference, current methods
tend to directly predict the answer based on co-occurrences
with those recognized concepts instead of reasoning from
the videos and questions, i.e., a partition in C dominates
the P (A|V,Q,H) by P (c|V,Q,H). For example, in Fig-
ure 7 (b), since run co-occurs much more with jump than
shoot, once the model detects run, it would predict the an-
swer as jump without noticing the fallen board or the dirt



around the board. Therefore, if we train the model based
on observational probability, the confounder will mislead
the model to spurious correlations.

3.2. Backdoor Adjustment

The technique of do-calculus is introduced in [43, 44].
Specifically, do(V,Q,H) denotes that we actively assign
values to variable V , Q, H, rather than passively observe
them. As illustrated in Figure 2 (b), do(V,Q,H) indicates
that we need to cut all incoming arrows to V,Q,H, and
make the V,Q,H independent to the confounder C. Note
that, all backdoor path from V,Q,H to A is from C → Q,
and do-calculus only needs to cut C → Q to prevent the
backdoor pathQ← C →A and A←Q← C →A. There-
fore, the formulation of P (A|do(V,Q,H)) is derivated as

P (A|do(V,Q,H));

=
∑
c

P (A|do(V,Q,H), c)P (c|do(V,Q,H)); (2)

=
∑
c

P (A|V,Q,H, c)P (c).

The formulation of backdoor adjustment is intuitive and
elegant. However, this formulation requires observing and
enumerating all the factors in the confounder. Since dataset
bias is very complex, it is impossible to disentangle all fac-
tors within the confounder. For example, in Figure 7, we
can find two kinds of biases, i.e., the environment bias and
the action bias, each of which contains many concrete items.
Besides, dataset bias is not brought by only one type of bias
independently but more likely by the combinations of dif-
ferent types of biases, like run indoors, run outdoors, jump
indoors, jump outdoors, etc. Furthermore, using pre-trained
model without pre-training data also prevents us from real-
izing potential confounder. Therefore, it is nearly impossi-
ble to get a reasonable split of the confounder C for back-
door adjustment.

3.3. Front-door Adjustment

Different from the backdoor adjustment, front-door ad-
justment can also be used to implement P (A|do(V,Q,H)),
with which we do not need to split the confounder C. As
illustrated in Figure 2 (c), to apply the front-door adjust-
ment, an additional intermediate variable Z should be in-
serted between Q,H and A to construct front-door paths
Q → Z → A and H → Z → A. The causal intervention
is then decomposed into two parts:

P (A|do(V,Q,H))

=
∑
z

P (z|do(V,Q,H))P (A|do(z)). (3)

The first term in front-door adjustment is formulated as

P (z|do(V,Q,H)) = P (z|V,Q,H) = P (z|Q,H), (4)

and the second term is formulated as

P (A|do(z))

=
∑
v

∑
q

∑
h

P (A|z,q,h,v)P (q,h,v), (5)

=
∑
v

∑
q

∑
h

P (A|z,q,h,v)P (v)P (q|v)P (h|q,v),

where v, q, h represents all the possible representations in
video, question, and aligned feature space.

To sum up, by applying Equation 4 and 5 into Equa-
tion 3, we have the front-door adjustment:

P (A|do(V,Q,H))

=
∑
v

P (v)
∑
q

P (q|v)
∑
h

P (h|q,v)
∑
z

P (z|Q,H)P ∗(A),

= EvE[q|v]E[h|q,v]E[z|Q,H]P
∗(A), (6)

where P ∗(A) = P (A|v,q,h, z). By applying the Nor-
malized Weighted Geometric Mean (NWGM) [53, 67], the
outer expectation is moved into feature level:

P (A|do(V,Q,H))

= EvE[q|v]E[h|q,v]E[z|Q,H][P (A|v,q,h, z)]

= EvE[q|v]E[h|q,v]E[z|Q,H][Softmax[g(v,q,h, z)]] (7)
≈ Softmax[g(Ev[v],E[q|v][q],E[h|q,v][h],E[z|Q,H][z])],

where g(·) is a fully-connect layer.
So far, we have introduced the reason for dataset bias

(i.e., the confounder C and the backdoor path) and the theo-
retical solution: front-door adjustment.

4. Methodology
In this section, we will introduce the implementation of

Equation 7 from two aspects, the knowledge space along
with the other three feature spaces (Section 4.1) and the ap-
proximation of the expectation (Section 4.2). In Section 4.3,
we will introduce the overall pipeline of KPI framework.

4.1. Knowledge Space and Feature Spaces

Knowledge Space Z. As explained in Section 1, the
VideoQA model would be misled by dataset bias and ig-
nore the causal relation between video-question and the an-
swer. Therefore, in knowledge space Z, we aim to separate
the causal relations from correlations. Towards this end, we
propose to first extract the correlated concepts from video-
questions and answers, and then select the causal relations
with existing knowledge graphs. In detail, we propose to
build the knowledge space Z in the following steps,

1. For each training instance, we extract the actions and
objects from video with I3D ResNeXt-101 [64, 17] and



Faster R-CNN [49] as video concepts (Cvi ), extract the
key words and phrases with NLTK [1] from question
as question concepts (Cqi ). Besides, we extract key
words and phrases with NLTK [1] for multi-choice an-
swers, and directly keep the answer for open-ended an-
swers as answer concepts (Cai )

2. For each training instance, we generate the corre-
lated concepts (head-tail, h-t) from Cvi , Cqi , and Cai

,
where h ∈ Cvi ∪ Cqi and t ∈ Cai

.

3. For all training instances, we collect all the correlated
concepts to initialize knowledge space Z.

4. For each correlated concept (h-t) in knowledge space,
if the h and t are adjacent nodes in existing knowl-
edge graphs, the correlated concept is expanded with
the node relation as a causal concept (head-relation-
tail, h-r-t); otherwise, it is removed from knowledge
space.

5. For each causal concept in knowledge space, we trans-
form it into trainable knowledge embedding vectors
with pre-trained BERT [8].

More details about knowledge space are in Supplementary.
For knowledge graphs, we explore ConceptNet [52] and

Atomic [23] to select the causal concepts, where Concept-
Net focuses on physical-entity relations and Atomic con-
centrates on event-centered and social-interaction relations.

Furthermore, each knowledge embedding vector from
the knowledge space cannot solely emphasize the informa-
tion from the video and the question or infer the answer.
However, combining multiple knowledge embedding vec-
tors, the knowledge space could provide enough clues to
summarize Q and H and reflect the causal relations for
question answering simultaneously. To this end, the KPI
framework will first use the question features and aligned
features to softly retrieve the related knowledge embedding
vectors (Q → Z ← H) and then exploit these knowledge
embedding vectors to predict the answer (Z → A).
Video Feature Space V. For each video, there are three
types of features exploited in current methods, i.e., the mo-
tion feature from clips, the appearance feature from frames,
and the bounding-box feature from objects. For each type
of feature, we first collect all the feature vectors from the
whole training set based on different feature extractors (i.e.,
I3D ResNeXt-101 for motion feature, ResNet-152 for ap-
pearance feature, and Faster R-CNN for bounding-box fea-
ture), and then apply the k-means algorithm to reduce the
number of feature vectors within each type of video sub-
embeddings to kV . Therefore, the video feature space has
three sub-spaces, i.e., the motion feature space Vm, the ap-
pearance feature space Va, and the bounding-box feature
space Vo. Since different baseline methods use different
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Figure 4. The illustration of KPI framework. Given video and
question, we first use the baseline method to extract and align
video-question features. Then,Q,H and V along with four feature
spaces are sent to EXP modules, along with the fully-connected
layer (g(·)) and Softmax layer to implement Equation 7. For sim-
plicity, we only show one EXP module for E[v|V][v].

types of video features, the video feature space is decided
by the input of each method. For example, for CoMem [12]
and HGA [26], V is the appearance feature space Va and
the motion feature space Vm; for HQGA [62], V is the
bounding-box feature space Vo, the appearance feature
space Va, and the motion feature space Vm.
Question Feature Space Q. For question feature space, we
first extract question features with fine-tuned BERT. For
each question, the question feature Qi ∈ Rnqi

×dq is then
average-pooled along the question sequence to get the ques-
tion vector qi ∈ Rdq . Finally, the k-means algorithm is
applied to reduce the number of feature vectors to kQ.
Aligned Feature Space H. The aligned feature is generated
from video-question interaction, which cannot be directly
extracted from uni-modal pre-trained model. To build the
aligned feature space, we first rely on the baseline method
by training a baseline model on observation probability, and
then inferring the aligned vector for each video-question
pair with the trained model. Like the video feature space
and question feature space, the k-means algorithm is also
applied to reduce the number of vectors into kH .

4.2. Expectation

In Equation 7, we need to calculate Ev[v], E[q|v][q],
E[h|q,v][h], and E[z|Q,H][z], each of which is an approxima-
tion to the expectation in corresponding feature space. Here
we use E[z|Q,H][z] as an example to show how the expecta-
tion is calculated with the EXP module. Given the knowl-
edge space Z, we have E[z|Q,H][z] =

∑
z P (z|Q,H)z,



where the conditional distribution P (z|Q,H) can be ap-
proximated by attention modules. Specifically, we explore
three different kinds of attention mechanisms for this ap-
proximation, including channel attention [21], product at-
tention [59], and multi-head attention [54]. The inputs
of each attention module are the knowledge space Z =
[z1, ..., zkZ

], and the concatenation of the question embed-
ding and the aligned embedding Cat(q̂, ĥ) from Q and H.
For channel attention, it can be formulated as

ai = wT tanh(W1zi +W2Cat(q̂, ĥ)),

α = softmax(a), z̄ =

kz∑
i=1

αizi, (8)

wherewT ,W1 andW2 are trainable parameters. For prod-
uct attention, it can be formulated as

z̄ = softmax(
Cat(q̂, ĥ)W1(ZW2)T√

dz
)ZW3, (9)

where W1, W2, and W3 are trainable parameters. For
multi-head attention, it is formulated as

headk = softmax(
Cat(q̂, ĥ)W k

1 (ZW k
2 )T√

dz
)ZW k

3 ,

z̄ = Cat(head1, ...head8)Wout, (10)

where W k
1 ,W

k
2 ,W

k
3 ,Wout are trainable parameters, and

we exploit eight heads here.
Note that although Ev[v] does not condition on any vari-

able, we still need to approximate Ev[v] via E[v|V][v] for
each training instance. Otherwise, the approximated results
will degrade into a single fixed vector for all different in-
puts. Expressly, for each video with different input fea-
tures, i.e., motion, appearance, and bounding-box, we first
adopt a self-attention layer along with average pooling to
each type of video feature independently to get the video
sub-embeddings, i.e., v̂m, v̂a, and v̂o. Then we calculate
E[v|V][v] on each video sub-space with the corresponding
video sub-embedding. More details about the video sub-
embeddings can be found in Supplementary Material.

4.3. Knowledge Proxy Intervention

The structure of our Knowledge Proxy Intervention
(KPI) framework is illustrated in Figure 4. Given the video
and question, the baseline method (with the video and the
question feature extractor) is utilized to get the video sub-
embeddings, the question embedding, and the aligned em-
bedding. Then the knowledge space, Z, along with the
question embedding and the aligned embedding, is sent into
the EXP module to calculate E[z|Q,H][z]. Meanwhile, the
video feature space V (with the video sub-embeddings), the
question feature space Q, and the aligned feature space H

are sent into different EXP modules in turn to calculate the
E[v|V][v], E[q|v][q], and E[h|q,v][h]. Finally, these four ex-
pectations are sent to the fully-connect layer, i.e., g(·) in
Figure 4, with the Softmax layer to calculate the answer
distribution, P (A|do(V,Q,H)). Given the video V , the
questionQ, the knowledge space Z, the video feature space
Vo,Va,Vm, the question feature space Q, and the aligned
feature space H, the overall process is formulated as

ĥ, q̂, v̂o, v̂a, v̂m = BaselineMethod(V,Q),

z̄ = EXP(Z, Cat(ĥ, q̂)),

v̄o = EXP(Vo, v̂o),

v̄a = EXP(Va, v̂a), (11)
v̄m = EXP(Vm, v̂m),

q̄ = EXP(Q, Cat(v̄o, v̄a, v̄m)),

h̄ = EXP(H, Cat(v̄o, v̄a, v̄m, q̄)),

P (A|do(V,Q,H)) = softmax(g(z̄, v̄o, v̄a, v̄m, q̄, h̄)).

When training the KPI framework, we minimize the
cross-entropy loss by using P (A∗|do(V,Q,H)) as the tar-
get, i.e., L = −logP (A∗|do(V,Q,H)), whereA∗ indicates
the ground-truth answer.

5. Experiments
5.1. Experiment Settings

Datasets. We conduct experiments on five benchmark
datasets that focus on the VideoQA from different aspects:
MSVD-QA [65] and MSRVTT-QA [65] focus on the de-
scriptive question, where QA pairs are automatically gener-
ated from the corresponding video captions datasets. TGIF-
QA [24] splits the dataset into three subsets and emphasizes
the action recognition, temporal state transition, and frame-
level description, respectively. NExT-QA [61] features de-
scription, temporal relation, and evidence reasoning among
multiple objects. Causal-VidQA [32] challenges the rea-
soning ability from both evidence and commonsense. More
details about the dataset statistics and implementation can
be found in Supplementary Material.
Baseline Methods. Current VideoQA methods for vide-
question alignment can be divided into three categories, 1)
the Memory-based methods that maintain a memory bank
to boost the representation of video and question, e.g.,
CoMem [12], and HME [9]; 2) the Graph-based meth-
ods that exploit the graph networks to model the intra-
and inter-relations between video and question, e.g., L-
GCN [22], HGA [26], and B2A [40]; 3) the Hierarchy-
based methods that study the multi-granularity natural hi-
erarchy structure of video to enhance the video-question in-
teraction, e.g., HCRN [28], MSPAN [16], HOSTR [7], and
HQGA [62]. 4) the Video-Language pre-trained method
that explore multiple task, like VideoQA, video caption, and



Model MSVD-QA MSRVTT-QA TGIF-QA NExT-QA Causal-VidQAAction Transition FrameQA
Memory-

based
CoMem [12] 34.7 35.1 70.3 76.6 53.4 48.5 47.7

HME [9] 33.7 33.0 73.9 77.8 53.8 49.2 46.2

Graph-
based

L-GCN [22] 34.3 33.7 74.3 81.1 56.3 49.5 -
HGA [26] 36.7 36.8 76.3 82.1 56.6 50.0 48.9
B2A [40] 37.2 36.9 75.9 82.6 57.5 - 49.1

Hierarchy-
based

HCRN [28] 36.1 35.6 75.1 81.2 55.7 48.9 48.1
MSPAN [16] 40.3 37.8 78.4 83.3 59.7 - -
HOSTR [7] 39.4 35.9 75.6 83.0 58.2 50.7 -
HQGA [62] 41.2 38.6 76.9 85.6 61.3 51.8 52.9

Scene
Bias

IGV [35] 40.8 38.3 - - - 51.3 -
EIGV [34] 42.6 39.3 - - - 53.7 -

Ours
CoMem + KPI 40.0+5.3 37.6+2.5 73.4+3.1 80.0+3.4 56.3+2.9 52.1+3.6 51.3+3.6

HGA + KPI 41.2+4.5 39.1+2.3 78.7+2.4 85.0+2.9 59.1+2.5 54.1+4.1 52.7+3.8

HQGA + KPI 43.3+2.1 40.0+1.4 79.3+2.4 88.3+2.7 63.0+1.7 55.0+3.2 56.7+3.8

Table 1. Comparison with baseline methods on five datasets. Best results on each dataset are highlighted in bold. The improvement towards
baseline method are highlight in red.

Model MSVD-QA MSRVTT-QA NExT-QA Causal-VidQA
- +KPI - +KPI - +KPI - +KPI

VIOLET 47.9 48.4 43.9 44.8 54.6* 55.9 58.6* 59.3
JustAsk 46.3 47.4 41.5 42.8 52.9* 54.8 57.8* 58.4

MERLOT 46.9* 47.8 43.1 44.4 54.3* 55.7 58.4* 59.0

Table 2. Comparison with VIOLET [11], JustAsk [68], and MER-
LOT [72] on MSVD-QA [65], MSRVTT-QA [65], NExT-QA [61],
and Causal-VidQA [32]. *: reproduced with official code.

video-image retrieval to enhance video-language alignment
in pre-trained model, e.g. VIOLET [11], JustAsk [68], and
MERLOT [72]. To validate the generalization of our KPI
framework, we migrate three baseline methods from differ-
ent categories: CoMem [12] (memory), HGA [26] (graph),
and HQGA [62] (hierarchy). Besides, we also compare with
two causal VideoQA methods, IGV [35] and EIGV [34].

5.2. Main Results

In Table 1, we summarize the results of SOTA meth-
ods and those with our KPI framework on five benchmark
datasets, i.e., MSVD-QA, MSRVTT-QA, TGIF-QA, NExT-
QA, and Causal-VidQA. Note that we use the multi-head
attention module as the EXP module in Table 1. Compared
across datasets and methods, our observations and analyses
can be summarized as follows:
(1) On all benchmark datasets and for all baseline methods,
our KPI framework outperforms the baseline methods by a
large margin (+1.4%∼+5.3%), which proves both the gen-
eralization ability and model-agnostic property of our KPI
framework. As a derivation and extension of causal inter-
vention, the distinct improvements further prove the effec-
tiveness and generalization of front-door adjustment from
both theoretical and empirical aspects.
(2) Comparing the improvements among different baseline

Setting MSVD-QA NExT-QA
HGA HQGA HGA HQGA

1 Baseline 36.7 41.2 50.0 51.8
2 KPI 41.2 43.3 54.1 55.0
3 EXP C-Att 40.5 41.5 52.8 53.9
4 P-Att 40.9 42.3 53.3 54.2
5

Knowledge
Space

Con 40.6 42.7 53.4 54.5
6 Atomic 40.1 42.2 53.8 54.8
7 *Con+Atomic 40.2 41.9 54.5 55.5
8 *Con 39.8 41.6 53.8 54.6
9 *Atomic 39.3 41.4 54.2 55.0

Table 3. Evaluation of the effectiveness of the EXP module and
knowledge space. C-Att and P-Att indicate channel attention and
product attention. Con, Atomic, and Con + Atomic indicate using
the Conceptnet, Atomic, and both of them to filter correlated con-
cepts. ∗ indicates the knowledge space of MSVD-QA and NExT-
QA is mixed up. Best results are highlighted in bold.

methods, we notice that our KPI framework improves more
on CoMem (2.5%∼5.3%) and HGA (2.3%∼4.5%) than
HQGA (1.4%∼3.8%). We suspect that the extra bounding-
box feature and hierarchy interaction between video and
question not only enhance the robustness of HQGA, but also
help reduce the spurious correlations.
(3) Comparing the improvements among different bench-
mark datasets, we observe our KPI framework achieves
the largest improvement on MSVD-QA (2.1%∼5.2%)
and achieves the smallest improvement on MSRVTT-QA
(1.4%∼2.5%). The reason for such observation is that
MSRVTT-QA and MSVD-QA are the largest and smallest
dataset. The baseline methods tend to capture the spurious
correlations and overfit the training set with fewer training
instances. Furthermore, we conjecture that KPI framework
performs better in a less generalized situation, leading to the



improvement gap between MSVD-QA and MSRVTT-QA.
In Table 2, we further conduct experiment with video-

language pre-trained models, where we can find that our
KPI framework can boost the performance of the stronger
baseline methods on these four datasets, which indicates
the generalization ability of our framework in different sit-
uations. Compared among different baseline methods, our
framework can achieve the most on NExt-QA and achieve
the least on Causal-VidQA, which is about 1.3% - 1.9% and
0.6% - 0.7%, respectively. We suspect that the NExT-QA
focuses more on evidence-based question-answering and
the Causal-VidQA focuses more on commonsense-based
question-answering, which make our deconfounding frame-
work have less effect on the Causal-VidQA

5.3. Ablation study

In this section, we study the effects of different knowl-
edge spaces, EXP modules, and hyper-parameters. All ab-
lation experiments are conducted on MSVD-QA and NExT-
QA with HGA and HQGA as baseline methods.
The effect of different knowledge spaces. We study the
effect of knowledge space from two aspects in Table 3, i.e.,
the difference between knowledge graphs and the difference
between sharing and separating knowledge spaces between
datasets. Comparing line 2 v.s. 5 v.s. 6 and line 7 v.s. 8
v.s. 9, we observe that jointly using both ConceptNet and
Atomic is better than only using one of them. Besides, Con-
ceptNet works better than Atomic for MSVD-QA, however,
Atomic works better than ConceptNet for NExT-QA. This
is because the relations on ConceptNet are mainly about
physical entities, whereas the relations on Atomic empha-
size more on event and social interaction. Therefore, Con-
ceptNet is more helpful for description, and Atomic con-
tributes more on reasoning. Comparing line 2 v.s. 7, we no-
tice that the tendency between MSVD-QA and NExT-QA is
inconsistent. For MSVD-QA, sharing the knowledge spaces
undermines our KPI framework, but for NExT-QA, shar-
ing the knowledge spaces further boosts the performance.
We suspect that the MSVD-QA focuses on relatively simple
scenes, which only requires limited knowledge for answer
prediction. Hence, the knowledge from NExT-QA would
introduce more noise than information. On the contrary, the
NExT-QA focus on relatively complex scenes with tempo-
ral and evidence reasoning question, which requires more
knowledge for answer prediction, and the knowledge space
from MSVD-QA would be complementary.
The effect of different EXP modules. We validate the ef-
fect of different EXP modules in Table 3. Comparing the
performance among lines 2 v.s. 3 v.s. 4, we find that prod-
uct attention outperforms channel attention, while multi-
head attention outperforms both of them. Regarding the
difference between channel and product attention, product
attention introduces 2nd-order interaction between key and

Setting MSVD NExT-QA
HGA HQGA HGA HQGA

1 Baseline 36.7 41.2 50.0 51.8
2 KPI 41.2 43.3 54.1 55.0
3 w/o V 40.7 42.9 53.6 54.6
4 w/o Q 40.6 42.6 53.5 54.2
5 w/o H 40.1 42.5 53.2 54.0
6 w/o Z 36.8 41.3 50.2 51.9
7 Z w/o Q 39.6 42.3 52.7 53.6
8 Z w/oH 38.2 41.9 51.8 52.8

Table 4. Evaluation of the effectiveness of different variables in
answer prediction and Z construction. w/o V, w/o Q, w/o H, and
w/o Z indicates the Ev[v], E[q|v][q], E[h|q,v][h], and E[z|Q,H][z]
is not used for answer prediction, respectively. Z w/o Q, and Z
w/oH indicate that the q̂, and ĥ is not used for Z construction.

a. MSVD-QA b. NExT-QA

Figure 5. The variance of accuracy on MSVD-QA (left) and NExT-
QA (right) in our method with different sizes of video feature
space, question feature space, and aligned feature space.

query. In contrast, channel attention only exploits the 1st-
order interaction, which helps product attention produce
more informative attention weight. Furthermore, on top of
the 2nd-order interaction, multi-head attention introduces
more diverse attention weights, which could capture differ-
ent attention patterns within a single attention layer.
The effect of different variables for answer prediction.
We validate the effect of different variables for answer pre-
diction in Table 4. Comparing the performance among lines
1 v.s. 2 v.s. 3 v.s. 4 v.s. 5 v.s. 6, we can find that the H
contributes the most among V, Q, and H since H contains
information from both V and Q. Moreover, we can also find
that Z contributes the most among all four variables, since
Z is in charge of the front-door adjustment, which enhance
the generation ability of existing method.
The effect of different variables for Z construction. We
validate the effect of different variables for Z construction.
Comparing the performance among lines 1 v.s. 2 v.s. 7
v.s. 8, we can find that H contributes more than Q, since
it contain clues from both video and question, which is im-
portant for KPI framework to deconfound.
The effect of dictionary size. We change the kV , kQ, and
kH in the range of [100, 1000] with interval 100 in turn, and
fix the size of the other two feature spaces as 500 to plot the
performance variance in Figure 5. As feature space size in-



creases from 100 to 1000, the accuracy first increases and
then becomes stable. We suspect that as the size of feature
space increases, more base patterns in three feature spaces
are introduced, which helps estimate the expectation in each
space. However, as the feature size becomes larger, the
speed of introducing new patterns becomes slower, which
gradually stabilizes the accuracy curve.

5.4. Qualitative Results

To capture the learning insight of our KPI framework, we
inspect the predictive answer of some video instances along
with top-attended causal concepts and show the visualiza-
tion in Figure 6. The causal concepts retrieved from our
KPI framework provide comprehensive support for the an-
swer prediction and effectively alleviate the effect of dataset
bias. Besides, we also notice a few causal concepts may not
be directly used for answer prediction, e.g., <hold-xReact-
prevent escape>; but such causal concepts can reflect the
characteristics of objects or actions, which could be helpful
to exclude some wrong answers.

Moreover, we further show another two VideoQA ex-
ample on MSVD-QA to reveal how our KPI framework
reduce the bias. Our method can retrieve the knowledge
items <pouch-AtLocation-kangaroo>, <dust-RelatedTo-
spray>, and <target-RelatedTo-shoot>, which provides
more causal clues to deduce the answer beyond correlation.

5.5. Limitation

As we have discussed in Section 4.1, the knowledge
space should cover all the knowledge required for answer
prediction, which is nearly impossible due to the following
reasons, (1) existing knowledge graphs do not contain all
the causal concepts required for answer prediction; (2) if
the knowledge space size is too large, the resource required
during training and inference will also be intolerable. Be-
sides, current EXP module can only capture the 1st-order
head-tail relation through the causal concepts. Neverthe-
less, more complex head-head-tail or head-tail-tail relations
may also be helpful for answer prediction. In the future,
exploring a more suitable knowledge space and designing a
more informative EXP module would be the key to front-
door adjustment in VideoQA task.

6. Conclusion
In this paper, we have focused on the VideoQA from

dataset bias. Through analysis with causal graph, we have
proven that the confounder and the backdoor path lead
to spurious causality. Furthermore, we have proposed a
model-agnostic framework called Knowledge Proxy Inter-
vention, which has exploited the front-door adjustment and
required no prior knowledge about the confounder. The
effectiveness of KPI framework has been corroborated by
three baseline methods on five benchmark datasets.

Figure 6. The visualization of three VideoQA cases from NExT-
QA [61]. Top Z indicates the causal concepts from Z with the
top-5 highest attention weight. Correct (resp. Wrong) answers are
highlighted in green (resp. red)

Question：What animal is jumping into a bag at office?        Answer: Kangaroo
HQGA: Cat;        HQGA+KPI: Kangaroo

Question：What does the man doing while running?        Answer: Shoot
HQGA: Jump;        HQGA+KPI: Shoot

Top Z: <cat-HasA-claws>
            <bag-UsedFor-hold>
            <cat-CapableOf-scratch>
            <kangaroo-CapableOf-jump>
            <pouch-AtLocation-kangaroo>

Top Z: <shoot-RelatedTo-move>
            <dust-RelatedTo-spray>
            <gun-UsedFor-shooting>
            <target-RelatedTo-shoot>
            <gun-RelatedTo-hand>

Figure 7. The visualization of two VideoQA cases from MSVD-
QA [65]. Top Z is the concepts from Z with top-5 highest attention
weight. Correct (resp. Wrong) answers are highlighted in green
(resp. red)
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