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ABSTRACT

Painterly image harmonization aims to insert photographic objects
into paintings and obtain artistically coherent composite images.
Previous methods for this task mainly rely on inference optimiza-
tion or generative adversarial network, but they are either very time-
consuming or struggling at fine control of the foreground objects
(e.g., texture and content details). To address these issues, we pro-
pose a novel Painterly Harmonization stable Diffusion model (PHD-
iffusion), which includes a lightweight adaptive encoder and a Dual
Encoder Fusion (DEF) module. Specifically, the adaptive encoder
and the DEF module first stylize foreground features within each en-
coder. Then, the stylized foreground features from both encoders are
combined to guide the harmonization process. During training, be-
sides the noise loss in diffusion model, we additionally employ con-
tent loss and two style losses, i.e., AdalN style loss and contrastive
style loss, aiming to balance the trade-off between style migration
and content preservation. Compared with the state-of-the-art mod-
els from related fields, our PHDiffusion can stylize the foreground
more sufficiently and simultaneously retain finer content. Our code
and model are available at https://github.com/bcmi/PHDiffusion-
Painterly-Image-Harmonization.
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Figure 1: Painterly image harmonization aims to harmonize
the inserted photographic foreground according to the back-
ground painting. From left to right, we present the back-
ground image, the composite image via cut-and-paste, the
harmonized results of PHDNet [3] and our method.
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1 INTRODUCTION

The goal of painterly image harmonization is to integrate pho-
tographic objects into background paintings and achieve visual
coherence. While standard image harmonization [7, 8] focuses on
adapting low-level statistics (e.g., color, brightness), painterly im-
age harmonization [3, 44, 58] is more challenging as it requires
transferring high-level styles in addition to low-level statistics.

Existing works for this task can be roughly divided into two
categories: optimization-based [36, 58] and feed-forward [3, 44, 56]
approaches. For the optimization-based approaches [36, 58], they
optimize over the composite image by minimizing the designed
losses, which makes them very time-consuming and unsuitable for
real-time applications. Besides, the feed-forward [3, 44, 56] meth-
ods mainly rely on Generative Adversarial Network (GAN) [15]
and the trained model can directly generate the harmonized im-
ages. However, one limitation of GAN-based approaches is limited
control over complex foregrounds [49], resulting in unsatisfactory
harmonized foregrounds (e.g., loss of content and style details).

In recent years, diffusion models [21] have demonstrated compa-
rable or better performance compared with state-of-the-art image
generation models, by formulating image generation as sequential
stochastic transitions from a simple distribution to data distribu-
tion. Diffusion methods can be divided into unconditional diffusion
methods [21, 51] and conditional diffusion methods [39, 46]. The
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unconditional diffusion methods aim to generate realistic images by
modeling the distribution of natural images without conditioning
on any specific input. Whereas, the conditional diffusion methods
aim to generate images with the guidance of conditional informa-
tion (e.g., text, semantic mask, etc.). Among them, Stable Diffusion
(SD) [46] is one of the most popular models, which successfully
integrates the text CLIP [45] into latent diffusion. Further, some
more recent models (e.g., T2I-adapter [39], ControlNet [57]) freeze
the SD model and introduce trainable adapters to encode different
types of conditions into SD through multi-step guidance. There-
fore, conditional diffusion models offer a promising and flexible
approach to improve painterly image harmonization by enabling
multi-step guidance for the photographic foreground.

Several existing works have introduced diffusion methods into
similar tasks like cross-domain image composition [18] and image
editing [38]. For example, CDC [18] proposed an inference-time
conditioning method that uses high-frequency details from the
background and low-frequency style from the foreground object
for image composition. However, CDC [18] assumes that high-
frequency (resp., low-frequency) feature in the image represents
style (resp., content) information, which does not always hold. An-
other work SDEdit [38] synthesizes images by first adding noise to
the input image and then iteratively denoising through a stochastic
differential equation. However, this approach lacks proper and suf-
ficient guidance during the denoising process, leading to the final
image lacking sufficient styles and contents.

In this paper, we introduce Painterly Harmonization stable Diffu-
sion model (PHDiffusion), which exploits two extra modules based
on the Stable Diffusion (SD) model. Inspired by the conditional dif-
fusion model [39], we equip SD with a lightweight adaptive encoder,
which aims to extract the required condition information (i.e., back-
ground style, image content) from the composite image. As part
of denoising U-Net, the denoising encoder in SD takes composite
image as input. The adaptive encoder takes in the concatenation of
composite image and foreground mask, producing residuals added
to the feature maps in the denoising encoder. Based on the denois-
ing encoder and the adaptive encoder, we introduce a Dual Encoder
Fusion (DEF) module to fuse the information from two encoders.
Specifically, given the image features extracted by two encoders,
our DEF module incorporates the background style into foreground
content and generates the stylized foreground features. Then, the
stylized foreground features from two encoders are combined to
provide multi-step guidance in the denoising steps.

To utilize the rich prior knowledge in pretrained SD and relieve
the training burden, following [39], we freeze the model parameters
of SD, and only update the adaptive encoder and DEF module during
training. The standard noise loss used in diffusion models [46] could
maintain the image content, but cannot migrate background style
to the foreground. Therefore, we further introduce two additional
style losses, i.e., AdaIN loss and contrastive style loss, to balance the
style and content for foreground object. The AdalN loss [22] aligns
the multi-scale statistics (e.g., mean, variance) of the foreground
object with the background painting, while the contrastive style
loss [5] aims to push the foreground style towards background style.
In addition, we also incorporate a content loss to address the issue
of excessive content preservation by using noise loss alone. With
noise loss, style losses, and content loss, our PHDiffusion is able
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to comprehend the background style and preserve the foreground
content. During testing, our PHDiffusion could be directly used to
produce harmonized image, preventing additional time-consuming
inference optimization [18, 26].

To verify the effectiveness of our PHDiffusion, we compare our
methods with the state-of-the-art methods, and conduct experi-
ments on the benchmark datasets COCO [32] and WikiArt [41]. The
experimental results show that our PHDiffusion can achieve
certain visually pleasant results that previous methods can-
not achieve, especially when the background has dense tex-
tures or abstract style. Our contributions can be summarized
as follows: 1) We are the first work focusing on painterly image
harmonization using diffusion model. 2) We propose a Painterly
Harmonization stable Diffusion model (PHDiffusion) by using dual
encoder fusion to provide effective guidance and reasonable loss
designs to achieve sufficient stylization. 3) The experimental results
show that our PHDiffusion strikes a good balance between adapting
styles and maintaining structures.

2 RELATED WORK
2.1 Image Harmonization

As a subtask of image composition [42], image harmonization aims
to adjust the color and illumination statistics of foreground to be
compatible with background in a composite image. In recent years,
deep learning methods [4, 6, 17, 54, 62] play an important role in
this field. Especially after the first large-scale image harmonization
dataset iHarmony4 [8] was released, supervised image harmoniza-
tion [2, 9, 16, 19, 20, 33] methods have received more and more
attention. For example, DoveNet [8] approached image harmoniza-
tion as a domain translation task. Hao et al. [20] utilized attention
block to calculate non-local information for foreground adjustment.
SSAM [9] focused on relation between the spliced region and non-
spliced region by exploiting a dual path attention model to fuse
them together. CDTNet [7] combined pixel-to-pixel transforma-
tion and RGB-to-RGB transformation for high-resolution image
harmonization. Recently, DCCF [55] and S2CRNet [31] are applied
in this field for high resolution image harmonization. Note that the
abovementioned methods require ground-truth image to supervise,
which is not suitable for our task.

2.2 Painterly Image Harmonization

As a similar task to image harmonization, painterly image harmo-
nization aims to blend a photographic foreground into an artistic
background painting, resulting in a visually coherent painting. Com-
pared with image harmonization, painterly image harmonization
is more challenging as it needs to adapt high-level styles beyond
low-level statistics. Deep Painterly Harmonization [36] introduced
a two-pass algorithm to ensure both spatial and inter-scale statis-
tical consistency. Meanwhile, Deep Image Blending [58] utilized
a two-stage blending algorithm and proposed a Poisson blending
loss to guide blending together with content and style loss. How-
ever, both Deep Painterly Harmonization [36] and Deep Image
Blending [58] are optimization-based method, which optimizes the
input image during inference, making them unusable from real-time
harmonization. On the other hand, E2STN [44], PHDNet [3], and
Yan et al. [56] exploited the feed-forward scheme by first training
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the generator and then directly producing the harmonized image
during inference. Specifically, E2STN [44] took advantages of both
global and local discriminators to harmonize the embedded ele-
ment with the background image. PHDNet[3] exploited spatial
and frequency domains to capture different types of background
type, and then adjusted the foreground in both domains. Yan et
al. [56] integrated GP-GAN [53], WCT [29], and StyleTr? [10] to-
gether to fuse the global and local information together. Note that,
these feed-forward approaches [3, 44, 56] are mainly based on ad-
versarial learning by playing a minimax game between generator
and discriminator, which have limited control over complex pho-
tographic foreground [49] and have difficulty in leveraging prior
knowledge across different image domains [15]. Different from
them, our method is built upon the diffusion model, with stylized
foreground features as guidance and a combo of style losses to
produce the harmonized result.

2.3 Artistic Style Transfer

Artistic style transfer aims to stylize a content image given a style
image. Previous optimization-based methods [13, 14, 25] optimize
the content image to match its style with the style image. In con-
trast, feed-forward [10, 22, 24, 28, 35, 43] methods generate stylized
images by training a generator to combine the content image and
the style image. For example, style-relevant statistics [30, 60] (e.g.,
mean and standard deviation of feature map) between the style
image and fused image should be similar, and content-relevant infor-
mation [11] (e.g., the categories of objects) within the fused image
should also be kept from the content image. Moreover, to enhance
the visual quality in artistic style transfer, contrastive learning is
also introduced [5, 61] to capture sufficient style information. Artis-
tic style transfer methods stylize the entire content image, while
painterly image harmonization focuses on the inserted object in
the background painting.

2.4 Diffusion Models

Recently, diffusion models have shown remarkable performance
in image generation [21, 34, 51], text-to-image generation [40, 46],
image translation [26], image inpainting [37, 47], and image edit-
ing [18, 23, 38, 59]. Image editing and cross-domain image composi-
tion are the most relevant fields to our painterly image harmoniza-
tion. Hence, we focus on these two fields with diffusion models in
this section. Specifically, SDEdit [38] employed the image synthesis
approach that commences with the addition of noise to the input
image, followed by iterative denoising process with stochastic dif-
ferential equation. CDC [18] proposed to harmonize the image in
frequency domain by exploiting high-frequency details from the
background and low-frequency style from the foreground object.
Besides, there are a few diffusion models designed for artistic style
transfer. To name a few, DiffStyle [23] disentangled representations
for content and style, and fused them in h-space, which lies in the
bottleneck of U-Net. InST [59] was motivated by the belief that an
unique artwork can not be directly explained by words, so it de-
signed an encoding module that maps style image into text domain
through a CLIP image encoder.

However, previous diffusion-based methods can not provide
powerful style guidance and hold adequate content in painterly
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image harmonization. In this work, we endow stable diffusion with
stylized feature guidance and well-designed losses for adjusting
sufficient styles and maintaining content details, leading to better
harmonization performance.

3 METHOD

The overall framework of our PHDiffusion is depicted in Figure 2,
which consists of a Stable Diffusion (SD) model, an adaptive en-
coder, and a Dual Encoder Fusion (DEF) module. Given a composite
image I, and the corresponding foreground mask M, we first ex-
ploit the adaptive encoder to extract the multi-scale composite
feature maps Fé, i € {1,2,3,4}. In order to guide the generation of
SD, we fuse the composite feature map F%. with the corresponding
denoising feature map F ét from the U-Net encoder of SD according
to their resolutions through the DEF module to generate new de-

noising feature map F ;t. Note that, we freeze the SD, and supervise
the adaptive encoder and the DEF module using noise loss, content
loss, and two style losses (AdaIN loss and contrastive style loss).
Next, we will first briefly review SD model, introduce the adap-
tive encoder, and then elaborate on our DEF Module. Finally, we

will introduce the objectives for training adaptive encoder and DEF.
’
0
latent feature extracted by encoder from image I. z;;t =12..T

represents the latent feature that is deduced from z; in the forward
process of diffusion q(z;|z)). While z;; t € {T - 1,...0} is predicted

As for the notation in the remainder of this section, z/, is the initial

in the backward denoising process. Iy is the decoded harmonized
image from zg. M is the mask that is down-sampled to size of z.

3.1 Preliminaries

Our method is built upon the Stable Diffusion (SD) [46] model,
where SD is a latent diffusion model pretrained in two stages com-
prised of an auto-encoder and a denoising U-Net. In the first stage,
the SD model trains the auto-encoder, in which the encoder &
first encodes images I into latent space z; = &(I) and then the
decoder D reconstructs them into original images I = D(z)). In
the second stage, the auto-encoder is frozen and the SD constructs
the denoising U-Net g [21] by first adding T-step noise to latent
space feature 26 to generate z;;t = 1,2,...T, and then training the
denoising U-Net with latent denoising loss, which is formulated as

Lipm = Ez(f)’y’GNN(oil),t [”e —€p, (Z;’ L, 79, (y))Hg] ’ 1)

where € is the noise that is added in latent space feature z{ in each
noising step, €g, is the denoising U-Net that predicts the noise e
in current step ¢, y stands for extra condition (e.g., text, mask, etc.),
and 7y, is a domain specific encoder that projects y to intermediate
representation. In this work, we add condition information, i.e., the
composite image with foreground mask, using an adaptive encoder
similar to [39].

During inference, noise is first added to z to generate z7., and
then 27, is used as z7, the initial input for €p,. €5, is then iteratively
used to estimate the noise at each denoising step t, thus the latent
map z7 is gradually refined and ultimately becomes clean latent
feature z¢. Finally, the clean latent feature z is fed into the decoder
D to generate the image. For more details about the training and
inference of Stable Diffusion, please refer to [46].
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Figure 2: The architecture of our PHDiffusion. Given an composite image I and its foreground mask M, I. is sent to a pretrained
Stable Diffusion [7] model for painterly image harmonization. The input I, is first encoded to the latent space z; = (1), which
is followed by the forward process of diffusion to deduce z;; t = 1,2,..T with noise ¢. During inference, Z’T is used as the initial
input zT for the backward process to predict z;;t =T — 1,T — 2,...0 through the denoising U-Net. Finally, the harmonized image
Iy is generated through the decoder by Ip = D(zp). In the meanwhile, the composite image I concatenated with foreground
mask M is sent to the adaptive encoder, which is followed by the Dual Encoder Fusion to provide guidance to the denoising
process in U-Net. The denoising process is supervised by the noise loss £y pys. Besides, we exploit two style losses (L 44,7y and
Lcr) for foreground stylization and content loss (L;on,) for content preservation.

3.2 Adaptive Encoder

As introduced before, the adaptive encoder accounts for encoding
additional condition and providing multi-step guidance in the de-
noising steps. Previous implementations of the adaptive encoder [39]
focus more on rough structures (e.g., sketch, pose, semantic mask),
and exploit the text condition [46] to indicate extra demands (e.g.,
styles or environments). Different from previous works, we discard
the text CLIP model and adopt the lightweight adaptive encoder [39]
to encode the concatenation of composite image and foreground
mask, simultaneously preserving content details and extracting
background styles. In detail, the architecture of adaptive encoder
comprises of four feature extraction blocks and three DownSam-
ple (DS for short) blocks. The input with resolution 512 x 512 is
first downsampled to 64 x 64 (named as FY) through pixel unshuf-
fle [48]. By combining one convolutional layer and two residual
blocks as an extraction module (EM for short), the generation of
Fi., i € {1,2,3,4} can be formulated as:

FZ = EM,(DS(F})),
Fi = EMy(DS(F3)),

Fl = EM;(F?),

(2

F? = EM3(DS(F2)),
where the resolutions of Fi, Fg, Fg, and Fﬁ are 64 X 64, 32 X 32,
16 X 16, and 8 X 8, respectively. Similar structures also exist in
U-Net encoder to generate F, with the same resolution as F,
i€{1,23 4}

3.3 Dual Encoder Fusion Module

In the section, we introduce our Dual Encoder Fusion (DEF) module
to preserve content of foreground object and extract reasonable
style from background painting. As shown in Figure 2, the adaptive
encoder first takes composite image I and foreground mask M as
input, then generates the composite feature maps F é, i€{1,23,4}
with different resolutions. Each of the composite feature maps F_.
is then fused with the corresponding denoising feature maps F? .
However, we find that if we directly add or concatenate the feature
maps from these two encoders, the final generation result cannot
stylize the foreground well, leading to notable style discrepancy
between foreground and background.

Considering that CNN can only expand the receptive field of the
foreground features within a certain range and struggles to capture
long-range dependency [12], we propose to endow the foreground
features with global receptive field to some extent. To balance the
global-local receptive field of the foreground features, we design
different fusion strategies for the features with different resolutions.
For shallow features with high resolutions, where i € {1, 2}, com-
posite feature maps F_ are simply added to F it to maintain the
local structures. While for deeper features with low resolutions,
where i € {3,4}, Fi and F;t are fused through our DEF module to
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Figure 3: The architecture of Dual Encoder Fusion (DEF) mod-
ule. Given the composite feature map F. (resp., the denoising
feature map F;t), we stylize the foreground of composite
feature map (resp., the denoising feature map) by regarding
the foreground feature map F ’C 7 (resp., F ’Z . f) as query and

the background feature map F* b (resp., F! b) as key/value

through a transformer layer to obtaln the styhzed foreground

feature map Fcf (resp., FZ S Then, F f and FZ f are fused
through concatenation and a fully-connected layer, which
is then combined with the composite background feature
map F é , and denoising feature map F L , to further guide the
denoising process.

capture the global styles. The above process can be formulated as

oo {F’ L+ FL, i=12,

3
“ |DEF(FLFL), i=34. ®)

The structure of our DEF module is illustrated in Figure 3, which
consists of stylized feature extraction and stylized feature fusion.

3.3.1 Stylized Feature Extraction. Before we fuse composite feature
maps F. and denoising feature maps F it, we first need to expand
the receptive field of the foreground features and extract the desired
style from background. We utilize the foreground features to search
for relevant background styles through a transformer layer [52].
In detail, by taking composite feature map F? as example, we first
extract its foreground features F, ! and background features F 2 b
by masking and flattening, Wthh can be formulated as

Fi,f = Flatten(Fi o M),

) 4
. = Flatten(F; o (1~ M)), w

where M denotes the foreground mask that is down-sampled to
the corresponding size, o represents the element-wise product, and
Flatten(-) means the conversion from 2D feature map to 1D feature
sequence. To search for the relevant background styles, we en-
hance the foreground features through a transformer layer, where
F lC | serve as queries and F lC p serve as keys/values. The stylized

composite foreground features F 2 £ can be represented by
ﬁf:,f = Transformer(Fi o FC b F! o) (5)

where Transformer is a transformer encoder layer [52].
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Similar to F%, the denoising feature map F;[ can also be used

to get the stylized denoising foreground features F it’ > so that the
foreground features are stylized by relevant background styles.

3.3.2 Stylized Feature Fusion. After extracting F é rand F i[, f for

i € {3,4}, we need to leverage both Fé’f and f’lzt’f from dual en-
coders to help the denoising process. In particular, we first concate-
nate F lc rand F lzl’ > and then pass them through a fully-connected

layer to acquire the stylized foreground features F ; ,.c The stylized

foreground features F :iz,,c are then combined with the background
of composite feature map F. and the denoising feature map F ét to
guide the denoising steps. The above steps could be formulated as

Fl . =FC(F r@F. p). (6)
i

F, =F. + Fold(th ) +Flo(1-M), ()

where FC(-) means the fully-connected layer, & means the concate-

nation between two vectors, Fold(-) means folding the F 2,c Into
2D foreground map.

3.4 Objective Function

First, we employ the standard noise loss from diffusion models [46],
which aims to reconstruct the image feature within the latent space.
However, merely using noise loss can only reconstruct the com-
posite image without changing the foreground style. Therefore, we
employ a combination of noise loss, AdalN loss, and contrastive
style loss, with the goal of attaining a balance between reasonable
style and preservation of image structures/details. Besides, content
loss is employed to assist in balancing noise loss and style losses.
In the following, we will detail four losses one by one.

3.4.1 Noise Loss. The denoising step of DDPM [21] is to remove
noise from 27, step by step and finally reconstruct the original
composite input z;. Therefore, the goal of the noise loss is to predict
the noise in step t, which can be formulated as

2
Lipm =By ye~N(01),t [“6 — €, (Z; £, Téz(y))Hz] ;

in which ¢ is sampled from {1, ..., T}, y is the condition information
(i.e., composite image and foreground mask) in our problem. €g, in-
cludes the model parameters of denoising U-Net, while 75, includes
the model parameters of adaptive encoder and dual encoder fusion
module.

3.4.2 AdalN Loss. Note that the noise loss in Eqn. (8) is calcu-
lated in the latent space, whereas the style losses cannot be di-
rectly calculated in the latent space. Thus, we calculate two style
losses based on the decoded image through decoder D, giving

= Z)(é(t)). 26 = (z; - VI—azep, (z;, t, réz(y))) /Na; [21], in

¢
[T as, as = 1 — B and S represents forward process
s=1
variances. Based on I, we can easily calculate style losses.

We utilize the AdaIN style loss [14] to achieve consistency in
multi-scale feature statistics (i.e., mean, standard deviation) between
the background painting and the foreground in the harmonized

which a; =
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Mask Anchor

Positive Sample Negative Sample

Figure 4: Construction of a triplet of anchor, positive sample,
and negative sample for contrastive style loss.

image Ip. The style loss can be written as

Lnda =3 (9 (1) 51) (o' 1) +
=1

o5 1) o )~ s )

where ¢l,l € {1,2,3,4} represents the I-th ReLU_I_1 layer in a
pre-trained VGG-19 [50] network. I}, is the complete background

©

painting and M ! denotes the foreground mask that is down-sampled
to the corresponding size. y(-) means the calculation of mean value
and o(-) means the calculation of standard deviation.

3.4.3 Contrastive Style Loss. To better migrate background style
to foreground, we introduce another contrastive style loss, which
is complementary with Adaln loss. Contrastive style loss was first
introduced into style transfer task by [5], which distinguishes the
image rendered by the reference style from other styles. Here, we
adapt contrastive style loss to our painterly image harmonization
task. Specifically, we construct a triplet of three elements: anchor,
positive sample, and negative sample, as shown in Figure 4. To
acquire anchor, we first feed the harmonized output Iy into pre-
trained VGG-19 network and extract the output feature map of
ReLU_3_1 layer. Then, we crop the feature map with the downsam-
pled mask followed by average pooling to obtain the foreground
feature, which is projected to the anchor vector f . Through the
same procedure, positive sample f; is extracted from the back-
ground painting Iy, so that f, and f;; share the same style. And
negative samples f, are extracted from other style images. Given
the triplet, we tend to pull close the anchor and positive example
while separating the anchor from negative examples, which can be

represented as
e (1) (15) 1]

exp ((fq)T (£2) /r;) + 2, exp ((fq)T (75) /'72 )

Lcp =~log

5

where the temperature 5 regulates the push and pull forces. We set
n as 0.2 following [5].

3.4.4 Content Loss. In addition, when balancing between noise
loss and style losses, chances are that the content details are exces-
sively preserved, leading to insufficient style transfer. Therefore, we
reduce the weight of noise loss and incorporate content loss [14],
which is commonly used in style transfer tasks. The content loss

Lingxiao Lu, Jiangtong Li, Junyan Cao, Li Niu, and Liging Zhang

can help preserve the high-level content information without the
sacrifice of styles. The content loss can be written as
4 (3 4 2
Leon = [#* (10) - ¢* (1) (1)

where ¢* has been defined below Eqn. (9).

3.4.5 Total Loss. By summarizing the noise loss, two style losses,
and content loss, the total loss can be written as

Liotal = MLLpM + Ladain + A2 LcL + Leon, (12)

in which A; and A, are hyper-parameters. We empirically set them
as 60 and 5 respectively.

4 EXPERIMENTS
4.1 Experiment Settings

We train the adaptive encoder and the fusion module for 10 epochs
with a batch size of 2. We utilize Adam as the optimizer with the
learning rate of 2x10~*. During training, we resize the input images
and the mask to 512 X 512 and use the pretrained Stable Diffusion
model [7] with the version of sd-v1-4. We utilize the training data
of COCO [32] and WikiArt [41]. For more implementation details,
please refer to the supplementary.

4.2 Baselines

Based on the target task, existing baselines can be categorized
into three groups: painterly image harmonization [3, 36, 58], cross-
domain composition methods [18, 38], and artistic style transfer
methods [10, 22, 35, 43, 59]. The painterly image harmonization
methods include DIB [58], DPH [36], and PHDNet [3]. The cross-
domain composition methods include CDC [18] and SDEdit [38].
The artistic style transfer methods include AdaIN [22], AdaAttN [35],
SANet [43], StyTr2 [10], and InST [59]. Among them, CDC [18],
SDEdit [38], and InST [59] are diffusion-based methods.

For the first and the second groups, these works can stylize a cer-
tain region, so we directly compare them with our results. However,
for the third group, these works stylize the entire photographic im-
age. To adapt artistic style transfer methods to our task, we stylize
the content image according to the background image, followed by
cutting and pasting the stylized foreground object onto the back-
ground image. We set Strength to 0.7 by default to control total
inference steps for our model. More details of implementations
including hyper-parameters of baselines are in the supplementary.

4.3 Comparisons with Baselines

4.3.1 Visualization Analysis. Compared with the first group of
baselines, painterly harmonization methods, we can refer to Figure 5
for the visualization results. It is shown that our PHDiffusion can
endow the foreground with more abundant and coherent styles
(row 1, 2, 3, 4). For example, as illustrated in row 1, our PHDiffusion
can not only learn the local dotted textures, but also learn the
global stripe arrangement. Besides, our method can strike great
balance between content and style. For content preservation, our
method holds more semantic edge information (row 1, 2, 3), and
also maintains more refined details (row 1). In row 3, our method
preserves the clear umbrella frame while capturing the textures
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omposite Mask SDEdit CDC DIB DPH PHDNet PHDiftusion

Figure 5: From left to right, we show the composite image, mask, harmonized results of SDEdit, CDC, DIB, DPH, PHDNet and
our PHDiffusion. Best viewed in color and zoom in.
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omposite Mask InST AdaIN AdaAttN ~ SANet StyTr2 PHDiffusion

Figure 6: From left to right, we show the composite image, mask, example results for InST, AdalIN, AdaAttN, SANet, StyTr2 and
our PHDiffusion. Best viewed in color and zoom in.

AdaIN  AdaATTN SANet StyTr2 InST DIB DPH PHDNet | SDEdit CDC | PHDiffusion
BT | -0.224 0.180 0.596 0912 -1.779 | -1.123 1.376 1.811 -2.476  -1.863 2.590
Table 1: Comparisons with baselines. "BT" stands for B-T score.

closest to the background. However, DPH loses details and semantic Compared with the second group, cross-domain composition
edge, while DIB and PHDNet fail to transfer coherent textures. methods, as illustrated in Figure 5 (left), we can see that SDEdit
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Version Method BT
Vi w/o Lcr, 0.636
V2 w/o LadaIN -1.584
V3 w/o TA,TU -0.421
V4 w/o TA 0.182
V5 w/o TU -0.112
V6 full 1.300

Table 2: The results of the ablation experiments. "TA" and
"TU" stand for the transformer layer in adaptive encoder and
U-Net encoder respectively. "BT" stands for B-T score.

Composite  Mask Vi V2 V3 V4 V5 V6

Figure 7: Examples of ablation experiments. Best viewed in
color and zoom in.

and CDC struggle to transfer sufficient style while keeping original
content (row 1, 3, 4). In row 1, the content has already changed
sharply while the style fails to be adapted to the target. Though
CDC has learnt some dotted textures, the style and content exhibit
a lack of cohesion, resembling distinct layers. And in row 3 and row
4, the content is lost to some extent with details unrecognized. The
poor performance of baselines is probably caused by the stochastic
nature of diffusion model, which can be a double-edged sword
for the tasks that require handling delicate details, since it is very
hard to adjust hyper-parameters, (e.g., strength) to balance between
style and content without proper guidance. In contrast, our method
provides more effective guidance for the denoising process.

Compared with the third group, artistic transfer methods, as
shown in Figure 6, it can be seen that InST loses content and exhibits
style incompatible with the background (row 1, 4). Other style
transfer methods can not produce adequate styles. Our method not
only produces textures that highly match the background (row 1, 2,
3, 4), but also enables the overall color distribution to be strongly
correlated with the background (row 1, 3), leading to better visual
harmony.

The great performance of our PHDiffusion is attributed to two
aspects. Firstly, for producing sufficient styles, our DEF module can
query backgrounds for reasonable styles and utilize prior knowl-
edge in pretrained stable diffusion model. Secondly, for balancing
content and style, the combination of noise loss, content loss, and
style losses enable the adaptive encoder and DEF module to store
appropriate guiding information.

4.3.2  User Study. We also conduct a user study to compare the
effectiveness of various methods, following [3]. Specifically, we
randomly select 100 content images from COCO [32] and 100 style
images from WikiArt [41] to generate 100 composite images. Given

Lingxiao Lu, Jiangtong Li, Junyan Cao, Li Niu, and Liging Zhang

each composite image, we can obtain 11 harmonized results includ-
ing 10 baselines and our method. Then pairwise comparisons are
conducted, resulting in 5,500 image pairs. We invite 50 users to
identify the more harmonious one in each pair. Finally 275,000 com-
parison results are collected, followed by using the Bradley-Terry
(B-T) model [1, 27] to calculate an overall ranking of all methods.
As presented in Table 1, our PHDiffusion achieves the highest B-T
score.

4.4 Ablation Studies

As described in Section 3, our PHDiffusion exploits an adaptive
encoder along with the dual encoder fusion module to guide the
denoising process and two style losses to balance the content and
style. Therefore, in this section, we demonstrate their effectiveness,
and report B-T score in Table 2 and visual results in Figure 7. For
the effectiveness of style losses, we conduct experiments without
contrastive style loss (V1) or AdaIN loss (V2). For the effectiveness
of transformer layer in DEF module, we conduct experiments in
the following three settings: (1) remove transformer layers in both
encoders (V3); (2) remove transformer layer in adaptive encoder
(V4); (3) remove transformer layer in U-Net encoder (V5).
Comparing V1, V2, and V6 in Table 2, we find that the AdaIN loss
is more important for style transfer, while the contrastive style loss
assists in capturing more reasonable styles. Moreover, by comparing
V3, V4, V5, and V6 in Table 2, we can find that the transformer
layers in U-Net encoder and adaptive encoder are both helpful to
generate reasonable styles, and exploiting transformer layer in both
encoders can further boost the painterly image harmonization.
For visual results in Figure 7, comparing V1, V2, and V6, it is
observed that AdalN loss (V1) can learn styles that appear to be
blended, while contrastive style loss (V2) tends to learn fine textures
(more haziness for cup and more textures of the fur for bear) while
maintaining the original color. So the combination of two style
losses helps the transformer capture adequate local textures and
fine global styles. Comparing V3 and V4 (V3 and V5) in Figure 7,
we can find that the transformer can help learn more consistent
and reasonable styles from the background. Comparing V4, V5,
and V6 in Figure 7, it is observed that the adaptive encoder prefers
more subdued color (V5) while the U-Net encoder tends to perform
more exaggerated color (V4). Balancing them can achieve more
reasonable and harmonized styles for our final result (V6).

5 CONCLUSION

In this work, we have introduced diffusion model into painterly im-
age harmonization. We have proposed a novel Painterly Harmoniza-
tion stable Diffusion model (PHDiffusion), in which the denoising
process of diffusion is under the guidance of lightweight adaptive
encoder and dual encoder fusion. Experiments have demonstrated
that our approach can simultaneously preserve detailed content and
produce sufficient styles, surpassing the state-of-the-art methods.
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In the supplementary, we will first introduce the dataset and im-
plementation details in Appendix A. Then the hyper-parameter
Strength will be studied for style strength control in Appendix B.
The visualization of attention maps in the transformers of our dual
encoder fusion module will be explained in Appendix C. We will
also provide more details of implementing baselines and offer more
visual comparison results in Appendix D. Finally, we will discuss
the limitations of our method in Appendix E.

A DATASET AND IMPLEMENTATION DETAILS

We conduct experiments on two benchmark datasets, i.e., COCO [5]
and WikiArt [9], where COCO is a large-scale photograph dataset
with the instance segmentation annotation for 80 different object
categories and WikiArt is a large-scale digital art dataset consisting
of 27 distinct styles. These two datasets are used to produce com-
posite images by inserting photographic foreground objects from
COCO into painterly backgrounds from WikiArt.

In detail, to obtain the foreground object with proper size and res-
olution, we select 9,100 foreground images from the COCO dataset,
whose foreground ratio is between 0.05 and 0.3, and width and
height are > 480. Moreover, we select 37,931 background images
from the WikiArt dataset, whose width and height are > 512. Dur-
ing training, we use instance annotation to extract the foreground
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objects from the foreground images and then place it onto a ran-
domly chosen painterly background from the background images,
leading to 37,931 composite images in each epoch. Finally, all the
composite image are resized to 512 X 512 for training. This process
can produce composite images with discordant visual elements.
Our network is implemented using Pytorch 1.11.0. And the train-
ing process is executed on an Ubuntu 20.04 LTS operating system,
utilizing a computing environment comprising of 32GB memory,
Intel Xeon Silver 4116 CPU, and two GeForce RTX 3090 GPUs.

B STRENGTH CONTROL

Strength is a hyper-parameter that decides the total step in the
inference process. For example, the total step is equal to 35 when
Strength is 0.7 and default total step is 50. The larger total step
means more noise to be added and removed, leading to larger vari-
ability, so that the guidance from condition information could have
greater impact on the harmonized results.

We observe that when Strength grows larger in a proper range
(i.e., 0.1 - 0.7) , the style of our harmonized result gets transferred
gradually while the content details are barely changed. However,
as the Strength changes, other diffusion model baselines cannot
balance the style and content. In Figure 1, we visualize how the
harmonization results changes as the strength changes. In detail,
we compare the harmonization results of SDEdit [8], CDC [3],
InST [12], and our PHDiffusion with the Strength ranging from
0.1 to 0.9. Recall that the inference process of diffusion model is
under control of the Strength, where the smaller the Strength is,
the smaller the denoising step is. If the denoising process is guided
improperly or without guidance, the style and the content cannot
be balanced as the Strength changes. In detail, for SDEdit [8] and
InST [12] in Figure 1, as the Strength becomes larger, the style is
more sufficient while the content is destroyed. For CDC [3], since
the denoising process is guided by the composite image, as the
Strength gets larger, the content details are more preserved while
the style is ignored; however, as the Strength gets smaller, the
style is more sufficient while the content is destroyed. Besides, the
balanced point for CDC [3] is also quite vulnerable.

However, if this process is guided by our DEF module, it can
be tailored to painterly image harmonization with smooth transi-
tion between original and target styles without destroying content.



MM 23, October 29-November 3, 2023, Ottawa, ON, Canada

Comp&Mask

LA
v,

Lingxiao Lu, Jiangtong Li, Junyan Cao, Li Niu, and Liging Zhang

0.3 0.5 0.7

Figure 1: The results of adjusting Strength for controlling the degree of style transfer. Strength is set to 0.1,0.3,0.5,0.7, 0.9 from
left to right for each method. We also present the results of Ours, CDC, SDEdit, and InST for comparison.
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Figure 2: The attention maps in DEF module for Adaptive
Encoder and U-Net Encoder. For U-Net Encoder, we present
its attention maps in different timesteps.

Specifically, from our harmonization results in Figure 1, we observe
that the styles are progressively strengthened while content is well-
preserved (details such as eyes in the second example and words on
the airplane in the third example remain visually clear). This proves
that diffusion process is highly controllable and our mechanism
can provide powerful guidance for the diffusion process.

C VISUALIZATION OF ATTENTION MAPS FOR
DUAL ENCODER FUSION

To better understand the transformers in DEF module, we visualize
the attention maps of transformers during inference in Figure 2.
Since the feature maps in adaptive encoder remain the same during
multi-step inference, so its attention maps also remain the same.
In contrast, the feature maps in U-Net encoder are updated during
multi-step inference, so the attention maps vary in different steps.
Therefore, in Figure 2, we show how the attention maps in U-Net
encoder changes during denoising steps. Specifically, each attention
map is obtained by averaging the attention maps from all atten-
tion heads, and then resized to the original resolution. In Figure 2,
it can be observed that, for composite image whose background
has similar objects with foreground, these objects can be detected
and attended by the transformer layer, so that these objects in the
background usually have larger weights. For example, in row 1
of Figure 2, the wolf in the background, which is similar to the
foreground dog, gains attention in both adaptive encoder and U-
Net encoder. For U-Net encoder in different steps, the wolves are
all attended. Moreover, the ground surrounding the dog, which
has similar color to the dog, is also attended by our DEF module.
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Figure 3: Example failure cases of our PHDiffusion.

Besides, for composite image whose background has pure textures
(row 2), the DEF module seems to pay attention to the background
randomly for both adaptive and U-Net encoders to capture the over-
all pattern. These visualization results again prove that our DEF
module can focus on meaningful background regions and provide
rational guidance during the denoising steps.

D COMPARISON WITH BASELINES
D.1 Details of Diffusion-based Baselines

For all the diffusion-based baselines, since the Strength has great
influence on the harmonization results, we adjust the Strength
and select the optimal outcome for comparison. Therefore, we set
Strength to 0.5, 0.5 and 0.7 for SDEdit [8], CDC [3] and InST [12],
respectively, which are the best results for balancing content and
style. For our PHDiffusion, we choose Strength = 0.7 by default.
Besides, to adapt style transfer method InST [12] for painterly
image harmonization, for training process, we train the proposed
small conditional network on WikiArt while freezing the diffusion
model, after which the model is able to learn styles in WikiArt better.
Moreover, during inference, we first add noise for T steps to the
composite image in forward process. During each backward step,
we exploit the corresponding background in i-th forward step to
replace the background of predicted images in (T —i)-th background
step, which aims to preserve the background and only adapt the
foreground to satisfy the demand of painterly image harmonization.

D.2 More Visual Results

We provide more visual results to compare with other baselines. As
we have introduced in the main submission, we have three groups
of baselines. The first group contains painterly image harmoniza-
tion methods, DIB [11], DPH [7], and PHDNet [1]. The second
group includes cross-domain composition methods, CDC [3] and
SDEdit [8]. And the third group, artistic style transfer, consists of
AdalN [4], AdaAttN [6], SANet [10], StyTr2 [2], and InST [12]. The
results for the first and second group are shown in Figure 4, while
the results for the third group are shown in Figure 5.

In Figure 4, it can be seen that DIB [11], DPH [7] and PHD-
Net [1] can also achieve harmonization to some extent, but the
learnt textures are not as accurate as ours (row 1, 3, 4, 5, 10). Be-
sides, our PHDiffusion can capture more global styles, thus tending
to be more naturally blended with the background (row 2, 6, 7, 8).
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Specifically, our PHDiffusion is able to maintain more semantic
information and content details (e.g., the stripes on the body of the
cat in row 8 and the pattern on the shirt of the man in row 7). And
for cross-domain methods in Figure 4, it is obvious that SDEdit [8]
tends to directly copy the content of foreground objects (row 2,
3, 6, 9, 10), and the style is not compatible with the background
images. Besides, CDC [3] fails to preserve the content details (row
1,3,5,9, 10). The comparison between our PHDiffusion and other
cross-domain methods (i.e., SDEdit [8] and CDC [3]) turns out that
our method outperforms them in both style and content.

For the third group in Figure 5, it can be observed that InST [12]
has lost too much content details. Though its learnt style is quite
consistent with the background, the harmonization results from
InST [12] are still less realistic (row 1, 4, 6). Moreover, for AdaIN [4],
AdaAttN [6], SANet [10], and StyTr2 [2], they can also partially
migrate the background style, however, the styles in our results
are obviously more harmonized (row 3 to row 9). For various types
of backgrounds, our harmonization results always behave well in
holding semantic information (row 3, 7, 9). Overall, for our har-
monization results, the inserted foreground objects can be better
integrated into the background, making the whole harmonized
images appear to be intact artistic paintings.

E LIMITATIONS

Generally speaking, our method is capable of producing visually
appealing and harmonious results, however, some types of fore-
ground objects such as human faces are still hard to be in great
harmony with the backgrounds. Since human faces have delicate
details and we are very sensitive to the subtle changes in human
faces, it is very difficult to sufficiently stylize the human faces while
preserving their delicate details.
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Figure 4: From left to right, we show the composite image, mask, harmonized results of SDEdit [8], CDC [3], DIB [11], DPH [7],
PHDNet [1], and our PHDiffusion. Best viewed in color and zoom in.
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Figure 5: From left to right, we show the composite image, mask, example results for InST [12], AdaIN [4], AdaAttN [6],
SANet [10], StyTr2 [2], and our PHDiffusion. Best viewed in color and zoom in.



