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Abstract

With the rapid emergence of video data, image-to-video re-
trieval has attracted much attention. There are two types of
image-to-video retrieval: instance-based and activity-based.
The former task aims to retrieve videos containing the same
main objects as the query image, while the latter focuses on
finding the similar activity. Since dynamic information plays
a significant role in the video, we pay attention to the lat-
ter task to explore the motion relation between images and
videos. In this paper, we propose a Motion-assisted Activ-
ity Proposal-based Image-to-Video Retrieval (MAP-IVR) ap-
proach to disentangle the video features into motion features
and appearance features and obtain appearance features from
the images. Then, we perform image-to-video translation to
improve the disentanglement quality. The retrieval is per-
formed in both appearance and video feature spaces. Exten-
sive experiments demonstrate that our MAP-IVR approach
remarkably outperforms the state-of-the-art approaches on
two benchmark activity-based video datasets.

Introduction
Since the rapid growth of multimedia data has brought great
challenges to accurate retrieval across modalities, cross-
modal retrieval has become a highlighted research topic in
the retrieval area. Besides, along with the promotion of on-
line video platforms like YouTube, video-related retrieval
applications have drawn more and more attention from both
academia and industry. One of the most basic applications
is image-to-video retrieval, which aims to retrieve relevant
videos based on a query image. In general, image-to-video
retrieval can be categorized into Instance-based Image-to-
Video Retrieval (IIVR) (Araujo and Girod 2018; Zhang et al.
2019) and Activity-based Image-to-Video Retrieval (AIVR)
(Xu et al. 2020). IIVR aims to retrieve videos from the
database based on the main instance (i.e., main objects) in
the query image, while AIVR aims to retrieve the videos
containing a similar activity as the query image. Compared
with IIVR, which mainly focuses on the static information
of different instances in the video, AIVR pays attention to
both static appearance and dynamic motion of these objects,
which makes it much more challenging.
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Figure 1: The example of the retrieved results of activity-
based image-to-video retrieval with APIVR (Xu et al. 2020)
(resp., our expectation) (i.e., a,b,c,d (resp., e,f,g,h)), where
different activities are outlined with different colors. In de-
tail, (b) represents “Frisbee Catch”, (d) represents “Baseball
Pitch”, while (a),(c),(e),(f),(g),(h), and the query image be-
long to “Long Jump”.

For instance-based image-to-video retrieval, a simple
method (Sivic and Zisserman 2003) is to treat each frame in
the video as an individual image and calculate the similarity
between each frame and the query image. Nevertheless, the
heavy computation makes it unsuitable for large-scale data,
especially the long videos. To accelerate the retrieval pro-
cess, Yu, Wang, and Yuan (2017) extracted object propos-
als from each frame and measured the similarity between
the query object and the whole video through hamming dis-
tance. Additionally, to incorporate the object features from
different views, Sivic, Schaffalitzky, and Zisserman (2004)
learned object representations of query images and returned
the objects of interest in video shots through object-level
matching. However, all the instance-based image-to-video
retrieval methods focus more on object detection and rep-
resentation while ignoring the dynamic motion tendency of
different objects in videos and images, which makes them
difficult to discover the activity existing in the query im-
age. Unlike IIVR, activity-based image-to-video retrieval
not only searches for the same instances, but also explores
the motion information in the videos. Considering this, in
this paper, we focus on discovering the activity-related con-
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nection between images and videos.
To fulfil the Activity-based Image-to-Video Retrieval

(AIVR) task, Xu et al. (2020) proposed Activity Proposal-
based Image-to-Video Retrieval, which projected the im-
age features and activity proposal-based video features into
a joint space and employed Graph Multi-Instance Learn-
ing module to filter out the noisy proposals. The proposal-
based method is capable of matching images and videos in
a shared embedding space and avoiding the heavy compu-
tation of frame-based retrieval. However, simply matching
images and videos in a shared embedding space is ill-suited
for this task, which ignores the asymmetric relationship be-
tween images and videos. Specifically, the image features
only contain appearance information (e.g., the shape, pose,
texture, and color of objects) while the video proposal fea-
tures contain both appearance information and motion in-
formation (e.g., the trajectory of key points and variation of
objects). As shown in the top of Figure 1, we list top four
retrieval results of Xu et al. (2020). Without considering the
motion information in the videos, the retrieved results (i.e.,
(b) and (d)) may belong to different activities, such as “Fris-
bee Catch” and “Baseball Pitch”, since these results share
similar appearance features (e.g., green background, people
with running posture) with the query image.

Being aware of the asymmetric relationship between im-
ages and videos, we deem that the challenge of activity-
based image-to-video retrieval is how to use the motion fea-
tures from videos to assist the matching between images
and videos. In this paper, we leverage the motion features
disentangled from video features to guide the translation
from image features to video features, which brings in ad-
ditional motion information to facilitate the AIVR task. For
example, in the bottom of Figure 1, we aim to explore the
motion information inferred from image appearance (e.g.,
the emergence of the jumping pit and the parabola of long
jump).Therefore, the expected retrieval results (i.e., (e), (f),
(g), and (h)) could be decided from both static appearance
and dynamic motion.

In the paper, we propose our Motion-assisted Activity
Proposal-based Image-to-Video Retrieval (MAP-IVR) ap-
proach for the AIVR task, as illustrated in Figure 2. For each
image, we first use a pre-trained model (i.e. VGG-16) to ex-
tract image features. For each video, we apply R-C3D (Xu,
Das, and Saenko 2017), an extension of 3D CNN, to gen-
erate video proposal features, which are averaged to yield
the video features. After that, the video features are disen-
tangled into appearance features and motion features, while
the image features are projected to the same appearance fea-
ture space. Then, we translate image appearance features to
video features aided by motion uncertainty code. At length,
considering the asymmetric relationship between videos and
images, image-to-video translation from image appearance
features have multiple possibilities (e.g., shape variation and
action details of different human body parts), which are
characterized by the motion uncertainty code. Therefore,
we integrate image appearance feature with the motion un-
certainty code derived from certain video feature to recon-
struct this video feature, in which the image and the video
belong to the same activity category. Note that the motion

uncertainty code not only compensates the motion uncer-
tainty during image-to-video translation, but also facilitates
motion-assisted image-to-video retrieval. Finally, we con-
duct retrieval in both appearance feature space and video
feature space to combine the best of both worlds. Com-
prehensive experimental results on two benchmark activity-
based video datasets verify the effectiveness of our method.
Our contributions can be summarized as follows:

• Considering the asymmetric relation between image
modality and video modality, we propose to facilitate the
AIVR task with the assistance of video motion feature.

• We design a novel Motion-assisted Activity Proposal-
based Image-to-Video Retrieval (MAP-IVR) approach to
capture the activity-related correlation between images
and videos.

• Experiment results on two benchmark activity-based
video datasets demonstrate the superiority of our ap-
proach compared to state-of-the-art methods.

Related Work
Image-to-Video Retrieval
The goal of image-to-video retrieval is using a query image
to retrieve relevant videos, which can be categorized into
Instance-based Image-to-Video Retrieval (IIVR) (Araujo
and Girod 2018; Zhang et al. 2019) and Activity-based
Image-to-Video Retrieval (AIVR) (Xu et al. 2020). The
IIVR task pays more attention to the appearance relationship
between videos and images, so the retrieved videos contain
the same main objects as the query image. A common solu-
tion is treating each video as a sequence of images, which
inspires many works (Sivic and Zisserman 2003; Yu, Wang,
and Yuan 2017; Xu et al. 2017) to apply image retrieval
methods for image-to-video retrieval. Through the tempo-
ral consistency, Sivic, Schaffalitzky, and Zisserman (2004)
could find different views of the same object in videos and
return the objects of interest in video shots. To formulate the
relevant video segments searching, Zhu and Satoh (2012);
Wang et al. (2015) introduced a large vocabulary quantiza-
tion based Bag-of-Words (Harris 1954) to index videos. Be-
sides, Araujo and Girod (2018) developed video representa-
tion with Fisher Vectors and Bloom filters, aiming to find the
visual information in videos. Additionally, Xu et al. (2017)
measured the similarity through the distance between the
query image and its orthogonal projection in the subspace
spanned by video key frames.

Recently, considering the real-world applications, Xu
et al. (2020) raised the Activity-based Image-to-Video Re-
trieval (AIVR) task and proposed an activity proposal-based
approach. They adopted R-C3D (Xu, Das, and Saenko 2017)
to generate temporal proposal features to preserve the activ-
ity information. Then, following ACMR (Wang et al. 2017),
they projected the image features and activity proposal-
based video features into a shared embedding space to
measure similarities. Actually, the image features are not
motion-aware, so it is hard to guarantee that the shared em-
bedding space contains motion information. Therefore, in
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Figure 2: The flowchart of our MAP-IVR approach. We employ the R-C3D model (Xu, Das, and Saenko 2017) pretrained on
the ActivityNet dataset and VGG-16 (Simonyan and Zisserman 2015) pretrained on ImageNet (Deng et al. 2009) to extract
video proposal features and image features, respectively. Video proposal features are averaged to produce the video features.
Then, we disentangle video features into motion features and appearance features, and project image features into the same
appearance feature space. Finally, we perform image-to-video translation to reconstruct video features.

this paper, we employ video feature disentanglement and re-
construction to avoid losing motion information.

Video Representation Disentanglement
Since videos are essentially moving contents, it is natu-
ral to factor them into static and dynamic components. Lin
et al. (2017) separated video into motion, foreground, and
background under an unsupervised framework. Denton and
Birodkar (2017) designed a predictive auto-encoder with ad-
versarial loss to learn disentangled representation.

With the rapid growth of video data, learning disentan-
gled video representation has benefited various areas such
as video prediction (Villegas et al. 2017; Hsieh et al. 2018)
and video generation (Tulyakov et al. 2018; Wang et al.
2020). Video prediction aims to predict and forecast what
will happen in video sequences, and has been studied in sev-
eral contexts such as activity prediction (Soran, Farhadi, and
Shapiro 2015) and future frame prediction (Fan, Zhu, and
Yang 2019). Under the help of disentanglement, Villegas
et al. (2017) proposed to decompose the video into motion
and content, which are encoded independently to predict the
next frame. Video generation targets at generating realistic
temporal dynamics, which can be divided into generation
from additional input (Ohnishi et al. 2018) and noise (Saito,
Matsumoto, and Saito 2017). Through video disentangle-
ment, Tulyakov et al. (2018) adopted decomposed motion
and content representation for video generation.

From the perspective of technical approach, similar to Vil-
legas et al. (2017), we decompose the video into two com-
plementary parts (i.e., motion and appearance) with inde-
pendent encoders. However, instead of processing frames of
each video, we perform the disentanglement based on video-
level features, which is simple yet effective. From the per-
spective of application, our work is the first one to introduce
asymmetric representation disentanglement into the image-
to-video retrieval task.

Methodology
Overall
In this section, we will elaborate the details of our pro-
posed Motion-assisted Activity Proposal-based Image-to-
Video Retrieval (MAP-IVR) approach for the AIVR task, as
illustrated in Figure 2. Our proposed MAP-IVR can be di-
vided into feature disentanglement module and video feature
reconstruction module. In the first module, we disentangle
the video feature into appearance feature and motion fea-
ture, and project the image feature into the same appearance
feature space, which will be described in Section . In the sec-
ond module, video feature reconstruction is performed based
on the image appearance feature and the motion uncertainty
code derived from motion feature, which will be described
in Section . With two different feature spaces, our retrieval
strategy will be discussed in Section .
Problem Formulation and Notation For concise mathe-
matical expression, we denote a matrix (e.g., X) and vector
(e.g., x) using an uppercase and lowercase letter in boldface,
respectively, and denote a scalar (e.g., x) using a lowercase
letter. Besides, we adopt [·, ·] to represent the concatenation
of two vectors, and cos(·, ·) to denote the cosine similarity
between two features.

In the training stage, we assume that there are n image-
video pairs, denoted as (ui, v̄i)|ni=1, where ui ∈ Rdu is an
image feature vector and v̄i ∈ Rdv is a video feature vector
with du (resp., dv) being the feature dimension of ui (resp.,
v̄i). In the meanwhile, each pair (ui, v̄i) has the same activ-
ity category label yi. In the process of disentanglement, im-
age appearance feature aui ∈ Rd, video appearance feature
avi ∈ Rd, and video motion feature mv

i ∈ Rd can be learned,
where d is the dimension of these features. Then, based on
aui and mv

i , we perform image-to-video translation to recon-
struct video feature v̂i ∈ Rdv . Our objective is to calculate
the similarity between images and videos in appearance fea-
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ture space (i.e., aui , avi ) and video feature space (i.e., v̂i, v̄i).
In each training iteration, we feed a pair (ui, v̄i) with the
same activity category label into our method, and the sub-
script i is omitted in the remainder of this paper for simplic-
ity.

Feature Disentanglement
Feature Extraction Given an image, we use VGG-16
(Simonyan and Zisserman 2015) pretrained on ImageNet
(Deng et al. 2009) to extract its image feature u.

Given a video clip, we first apply a R-C3D model (Xu,
Das, and Saenko 2017) pretrained on the ActivityNet dataset
(Heilbron et al. 2015) to extract a bag of temporal proposals
which are very likely to contain the activity. Proposal gen-
eration is capable of generating candidate action proposals
and filtering out background noise. Besides, for each pro-
posal, the R-C3D model can predict its confidence scores
corresponding to all activity categories. We use the largest
confidence score among all activity categories as the confi-
dence score for each proposal, and choose top k proposals
with largest confident scores. For computation efficiency, we
simply average the top k proposal features as the video fea-
ture v̄.
Asymmetric Disentanglement To perform the motion-
assisted image-to-video retrieval, the first step is to disen-
tangle motion and appearance features from the video fea-
tures. Besides, the appearance features from both images
and videos are aligned in a shared appearance feature space.
Therefore, we use video motion encoder Emov and video ap-
pearance encoderEapv to disentangle the video feature v̄ into
motion feature mv and appearance feature av respectively.
The image feature u is projected to image appearance fea-
ture au through another image appearance encoderEapu . The
above procedure can be formulated as

mv = Emov (v̄), av = Eapv (v̄), au = Eapu (u). (1)

The goal of our feature disentangle module is separat-
ing motion and appearance information apart from the video
feature. Therefore, to maximize the divergence between mo-
tion features and appearance features, we employ an orthog-
onal constraint (Shukla et al. 2019) to reinforce the disentan-
glement. Specifically, we adopt cosine similarity to measure
the coherence between motion feature mv and video appear-
ance feature av:

Lorth = cos(mv,av), (2)
where the results are non-negative because both mv and av

are the output of ReLU activation. With the cosine similarity
decreasing, we expect the motion and appearance informa-
tion to be disentangled from the video feature v̄. The motion
feature concerns about dynamic changes, while the appear-
ance feature focuses more on the static objects, which be-
haves similarly to the image feature.

When an image and a video belong to the same activity,
they are supposed to contain visually similar objects. There-
fore, we align images and videos in the shared appearance
feature space. Specifically, in the appearance feature space,
the images and videos belonging to the same activity cate-
gory should be pulled close. Simultaneously, the appearance

features of different activities should be pushed apart. There-
fore, we employ an appearance classifier p to distinguish the
features from different activity categories regardless of their
modalities (image or video), with the cross-entropy classifi-
cation loss:

Lclass = − log(p(av)y)− log(p(au)y), (3)

in which y is the activity category label shared by au and
av . p(·)j means the classification score corresponding to the
j-th category.

Video Feature Reconstruction
To ensure that the video feature is successfully disentan-
gled into motion feature and appearance feature, we perform
video feature reconstruction on the basis of image appear-
ance feature au and video motion feature mv .

Because images lack motion information, image-to-video
translation is a multi-modal problem because the translated
video could have multiple possibilities instead of a single de-
terministic result. For example, given an image with a man
playing basketball, even if we can tell this man is going to
shoot the ball, the shape variation and action details of dif-
ferent human body parts in the shooting process are still
uncertain, leading to multiple possible motion information
compatible with this image.

Inspired by Kingma and Welling (2014), we encode mo-
tion feature into motion uncertainty code z, which compen-
sates for the motion uncertainty when translating images to
their corresponding videos of the same activity. To support
stochastic sampling in the testing stage, we enforce the mo-
tion uncertainty code to follow unit Gaussian distribution,
where pθ(z) = N (0,1). Specifically, we first apply mo-
tion uncertainty encoders Eµ and Eσ on motion feature mv

to obtain µ and σ respectively, which form the conditional
probability qφ(z|mv) = N (µ,σ). Then, we employ the
Kullback–Leibler divergence (Kullback and Leibler 1951)
loss to encourage qφ(z|mv) to be close to the prior pθ(z):

LKL = KL(qφ(z|mv)||pθ(z)), (4)

where φ indicates the model parameters of motion uncer-
tainty encoders Eµ and Eσ .

In the training stage, with z ∼ N (µ,σ), we adopt
the common reparameterization trick (Kingma and Welling
2014) to generate z as z = µ + εσ, where ε is a random
value sampled from N (0, 1). The concatenation of image
appearance feature au and motion uncertainty code z is sent
to the video feature decoder Dv , yielding the reconstructed
video feature v̂:

v̂ = Dv([a
u, z]). (5)

Recall that v̄ is decomposed into av and mv . Since au

is from the same category as av and the motion uncertainty
code z is provided by mv , the reconstructed video feature
v̂ (see Eqn. (5)) is expected to approach v̄. Therefore, we
apply aL2 reconstruction loss to enforce v̄ and v̂ to be close,
which is formulated as:

Lre = ‖v̄ − v̂‖22. (6)
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Method ActivityNet THUMOS’14
mAP@10 mAP@20 mAP@50 mAP@100 mAP@10 mAP@20 mAP@50 mAP@100

CMDN (Peng, Huang, and Qi 2016) 0.289 0.280 0.269 0.257 0.518 0.513 0.508 0.504
DSPE (Wang, Li, and Lazebnik 2016) 0.281 0.273 0.261 0.249 0.507 0.505 0.501 0.498

JFSSL (Wang et al. 2016) 0.277 0.268 0.256 0.244 0.476 0.473 0.469 0.465
ACMR (Wang et al. 2017) 0.294 0.288 0.273 0.259 0.526 0.522 0.514 0.505

CCL (Peng et al. 2018) 0.287 0.279 0.267 0.256 0.512 0.509 0.506 0.502
DSCMR (Zhen et al. 2019) 0.297 0.292 0.281 0.269 0.625 0.623 0.622 0.621

SDML (Hu et al. 2019) 0.304 0.301 0.289 0.279 0.648 0.647 0.646 0.645
BPBC (Xu et al. 2017) 0.295 0.287 0.275 0.258 0.514 0.511 0.507 0.503
APIVR (Xu et al. 2020) 0.308 0.298 0.283 0.269 0.655 0.653 0.651 0.649
MAP-IVR (Appearance) 0.304 0.297 0.284 0.273 0.643 0.641 0.637 0.635

MAP-IVR (Video) 0.323 0.313 0.296 0.282 0.691 0.689 0.682 0.677
MAP-IVR (Comb) 0.357 0.346 0.329 0.314 0.721 0.719 0.717 0.714

Table 1: Comparison with existing methods on ActivityNet and THUMOS’14. Best results are denoted in boldface.

Finally, we collect the orthogonal loss Lorth, classifica-
tion loss Lclass, KL divergence loss LKL, and reconstruc-
tion loss Lre as our total training loss:

Ltotal = λoLorth + Lclass + LKL + Lre. (7)

Retrieval
During testing, the comparison between images and videos
can be performed in both appearance feature space and video
feature space with our model.
Appearance Feature Space Given an image with feature u
and a video with feature v̄, we apply appearance encoders
Eapu and Eapv to obtain image appearance feature au and
video appearance feature av , respectively. Then, we calcu-
late their distance by

SA = 1− cos(au,av). (8)

Video Feature Space Given an image with feature u, after
obtaining its appearance feature au, we sample motion un-
certainty code from N (0,1) for h times, and concatenate
each motion uncertainty code with au, leading to h trans-
lated video features {v̂i|i = 1 . . . h} containing different
motion information. For the comparison between this image
and a video with feature v̄, we need to find out the trans-
lated video feature v̂i which is closest to v̄. Formally, we
calculate the distance as

SV =
h

min
i=1

(1− cos(v̄, v̂i)). (9)

To take full advantage of two spaces, we perform retrieval
based on the weighted average of SA and SV :

Sall = (1− λv)SA + λvSV , (10)

where λv is a hyper-parameter to balance two feature spaces.

Experiment
In this section, we will introduce the datasets, implementa-
tion details, and evaluation metrics in Section . Then, we will
compare our model with state-of-the-art methods in Section
. To verify the effectiveness of our method, we will provide
extensive ablation studies in Section . Besides, we will in-
vestigate hyper-parameters in our model in Section . Finally,
in Section , we will visualize and analyse the retrieved re-
sults in two spaces.

Experiment Setup
Dataset Since previous AIVR method (Xu et al. 2020)
does not release its used datasets, we construct the datasets
in a similar way to them, based on two public activity video
datasets THUMOS’14 (Jiang et al. 2014) 1 and ActivityNet
(Heilbron et al. 2015) 2.

For THUMOS’14, we use 200 validation videos and 213
test videos from 20 different sports activities, because val-
idation and test videos contain temporal annotations of ac-
tions. We merge similar activity categories: “Cricket Bowl-
ing” and “Cricket Shot”, “Cliff Diving” and “Diving”, re-
sulting in 18 remaining activity categories. For ActivityNet,
due to the limit of GPU memory and speed, we only use
the validation videos. As some video links have expired, we
eventually obtain 4727 videos from 200 activity categories.
In order to ensure that each video only belongs to one ac-
tivity category, we first divide each long video into multiple
short videos according to the temporal annotation. Then, we
sample a fixed number of consecutive key frames from each
short video as a video clip. Following Xu et al. (2020), we
set the number of key frames in each video clip as 768 for
all datasets, which is large enough to cover at least one activ-
ity instance. To construct image-video pairs, for each video
clip, we randomly sample a frame as its paired image.

Based on the collected image-video pairs, we can split
each dataset into training and test set. For THUMOS’14, we
obtain 7028 image-video pairs in total, and then divide them
into 5614 training pairs and 1414 test pairs, where the test
pairs exclude the validation videos because the validation
set is used for finetuning R-C3D model. For ActivityNet, we
obtain 4739 image-video pairs in total, which are divided
into 3790 training pairs and 949 test pairs.

Implementation Details For image features, we employ
VGG-16 (Simonyan and Zisserman 2015) pretrained on Im-
ageNet (Deng et al. 2009) to extract the output from fc7
layer as the image features. For video clips in ActivityNet
dataset, we apply R-C3D (Xu, Das, and Saenko 2017) model
pretrained on the ActivityNet dataset (Heilbron et al. 2015)
to extract activity proposals. To obtain better video features

1https://www.crcv.ucf.edu/THUMOS14/home.html
2http://activity-net.org/
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Figure 3: Visualization of the retrieved videos by our MAP-IVR approach. With a query image, we show the top 5 retrieved
videos in each space (i.e., appearance feature space and video feature space).

on THUMOS’14 dataset (Jiang et al. 2014), we finetune
the pretrained R-C3D model with the validation videos of
THUMOS’14, including 180 training videos and 20 held-
out videos, to extract activity proposals of each video clip in
THUMOS’14, which is different from Xu et al. (2020).

For all encoders and decoders used in our model, we em-
ploy three fully-connected layers with Batch Normalization
and ReLU activations. The dimensionality of image feature
and video feature is 4096. The dimensionality of appear-
ance feature, motion feature, and motion uncertainty code
is 1024. During training, we choose Adam (Kingma and Ba
2015) with learning rate 1 × 10−4 and set batch size as 32
for 60 epochs. Additionally, we set λo as 1. While retrieving,
we set λv as 0.5. Besides, we sample 25 motion uncertainty
codes z for the retrieval in video feature space (i.e., h = 25).
All the hyper-parameters are set via cross-validation. Our
model is implemented by PyTorch1.4 (Paszke et al. 2019)
on Ubuntu 16.04 and trained on a single GTX 1080Ti GPU.
We set the random seed as 123. The significant test with dif-
ferent seeds will be described in Supplementary Material.

Evaluation Metrics For a fair comparison, we adopt the
same evaluation metrics as Xu et al. (2020). In detail, we use
mAP@K, i.e., mean Aversion Precision based on top K re-
trieved results. In our paper, we report mAP@10, mAP@20,
mAP@50, and mAP@100 on both datasets.

Comparison with Existing Methods
Since there are only a few methods especially targeting at
image-to-video retrieval, we compare our proposed MAP-
IVR approach with two types of state-of-the-art meth-
ods. One is general cross-modal retrieval models, including
CMDN (Peng, Huang, and Qi 2016), DSPE (Wang, Li, and

Lazebnik 2016), JFSSL (Wang et al. 2016), ACMR (Wang
et al. 2017), CCL (Peng et al. 2018), DSCMR (Zhen et al.
2019), SDML (Hu et al. 2019). The other one is image-
to-video retrieval methods: BPBC (Xu et al. 2017) for the
Instance-based Image-to-Video Retrieval (IIVR) task and
APIVR (Xu et al. 2020) for the Activity-based Image-to-
Video Retrieval (AIVR) task. Note that although Araujo and
Girod (2018) solved the IIVR task, its primary purpose is
to improve video Fisher Vectors with bloom filters, which is
unsuitable for our task. For each baseline method, we vary
the dimension of feature used for retrieval in the range of
[64, 4096] and report the best results in Table 1. For our
method, we report the retrieval results in appearance feature
space, video feature space, and the combination of both.

We show our experimental results in Table 1. For both
datasets, our method outperforms all the state-of-the-art
methods by a large margin. Compared with APIVR (Xu
et al. 2020), which focuses on the same task as ours, our
method achieves an improvement of 4.9% on mAP@10 in
ActivityNet, and 6.6% on mAP@10 in THUMOS’14 3. Be-
sides, by comparing appearance feature space and video fea-
ture space for our method, the advantage of video feature
space reflects the benefit of incorporating additional motion
information. Moreover, combining two spaces can further
boost the performance.

Ablation Study
In order to study the effectiveness of different components,
we ablate different loss terms and observe the performance

3Note we fine-tune the R-C3D on THUMOS’14, which makes
the results of our reproduced APIVR (Xu et al. 2020) much higher
than their reported results.
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Figure 4: Analysis of different hyper-parameters. (a) The retrieval results with various combination ratios of two spaces. (b)
The retrieval results in video feature space and values of orthogonal loss with different λo. (c) The retrieval results based on the
combination of two spaces with different h motion uncertain codes in the testing stage.

Lclass LKL Lre Lorth Comb Ap Vi
1

√ √ √ √
0.357 0.304 0.323

2 ×
√ √ √

0.296 — 0.296
3

√
×

√ √
0.221 0.297 0.047

4
√ √

×
√

0.299 0.299 —
5

√ √ √
× 0.334 0.303 0.307

6
√

× × × 0.285 0.285 —

Table 2: The ablation study of different loss terms. “Comb”
represents the retrieval in the combination of two spaces (see
Sec. ); “Ap” and “Vi” represent the retrieval in appearance
feature and video feature space, respectively.

√
(resp., ×)

means adding (resp., removing) this loss during training.

variance. All experiments are conducted on the ActivityNet
dataset using the evaluation metric mAP@10, and results are
reported in Table 2. After removing Lclass, there is an evi-
dent drop in the video feature space (“Vi” in row 1 v.s. “Vi”
in row 2), which indicates the importance of aligning fea-
tures in the appearance feature space. However, when only
using Lclass, the results also decrease (“Comb” in row 1 v.s.
“Comb” in row 6), implying that a single classification loss
cannot guarantee the quality of feature disentanglement. The
results become worse without using Lre (“Comb” in row 1
v.s. “Comb” in row 4), which verifies that video feature re-
construction module can help the feature disentanglement.

Hyper-parameter Analysis
By taking the ActivityNet dataset as an example, we anal-
yse the hyper-parameters (i.e., λv , λo, and h) used in our
method, with the evaluation metric mAP@10. To explore
the effectiveness of different spaces, we vary λv in the range
of [0, 1] and the results based on the combination of two
spaces are shown in Figure 4 (a). When λv = 0.5, our
model reaches the best results, which implies that the com-
bination of two spaces has a positive impact on the retrieval
performance. In order to learn the influence of the orthog-
onal loss Lorth (see in Eqn. 2) on feature disentanglement,
we plot Lorth and the retrieval performance in video fea-
ture space by varying λo, which is shown in Figure 4 (b). As
λo increases in a reasonable range [0.001, 1], the final Lorth
drops but mAP@10 arises, which proves that better disen-
tanglement leads to better retrieval performance. Finally, we

experiment with different h, i.e., the number of sampled mo-
tion uncertain codes used in the testing stage. From Figure 4
(c), when λv = 0.5, we can find that the model can achieve
satisfactory results based on the combination of two spaces
when h is reasonably large (e.g., h > 10). With h getting
too large, some outlier points may be sampled and harm the
retrieval performance in video feature space. We also take
a study on the dimension of motion feature and appearance
feature (i.e., d) in Supplementary Material.

Visualization of Retrieved Videos
To better demonstrate the effectiveness of our method, we
provide a retrieval example on THUMOS’14 in Figure 3.
More examples will be shown in Supplementary Material.
With a query image, we show top 5 retrieved videos in ap-
pearance feature space and video feature space. We conjec-
ture that the former cares more about static appearance in-
formation (e.g., main object and background) while the latter
additionally focuses on dynamic motion information (e.g.,
the trajectory of key points and variation of objects).

As shown in Figure 3, with a query image from category
“Basketball Dunk”, the retrieved videos in appearance fea-
ture space contain the main objects such as people, basket-
ball, and backboard. Besides, the background also resembles
the query image. In video feature space, the retrieved videos
share the same activity, but vary in shooting angle and back-
ground scene. According to this example, we can observe
that results in video feature space focus more on the activ-
ity with the help of the motion information. Therefore, it is
evident that our method can separate the motion and appear-
ance information successfully. Furthermore, since the results
in appearance feature space and video feature space are com-
plementary, the combination of both can produce better re-
sults (see Table 1).

Conclusion
In this paper, we have studied the Activity-based Image-to-
Video Retrieval (AIVR) from a new viewpoint. Specifically,
we have proposed our MAP-IVR approach, which utilizes
motion information to facilitate the AIVR task via video
feature disentanglement and reconstruction. Comprehensive
experiments on two benchmark datasets have demonstrated
the effectiveness of our MAP-IVR approach.
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