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e Based on the asymmetric relation between image domain and sketch domain, we design a novel STRucture-
aware Asymmetric Disentanglement (STRAD) method to learn structural correspondence between these two
domains.

e We design a hybrid retrieval strategy in three spaces, where different space has its own speciality and they
can complement with each other to satisfy different retrieval requirement.

e Comprehensive results on three popular benchmark datasets show that our method significantly outperforms
the state-of-the-art methods.
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ABSTRACT

The goal of Sketch-Based Image Retrieval (SBIR) is using free-hand sketches to retrieve images
of the same category from a natural image gallery. However, SBIR requires all test categories
to be seen during training, which cannot be guaranteed in real-world applications. So we in-
vestigate more challenging Zero-Shot SBIR (ZS-SBIR), in which test categories do not appear
in the training stage. After realizing that sketches mainly contain structure information while
images contain additional appearance information, we attempt to achieve structure-aware re-
trieval via asymmetric disentanglement. For this purpose, we propose our STRucture-aware
Asymmetric Disentanglement (STRAD) method, in which image features are disentangled
into structure features and appearance features while sketch features are only projected to
structure space. Through disentangling structure and appearance space, bi-directional do-
main translation is performed between the sketch domain and the image domain. Extensive
experiments demonstrate that our STRAD method remarkably outperforms state-of-the-art

methods on three large-scale benchmark datasets.

(© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In the conventional SBIR setting, it assumes that the
images and sketches in training and test sets share the
same set of categories. However, in real-world applica-
tions, the categories of test sketches/images may be out of
the scope of training categories, leading to a more challeng-
ing task called zero-shot sketch-based image retrieval (ZS-
SBIR) [26], which assumes that test categories do not ap-
pear in the training stage. In the remainder of this paper,
we refer to training (resp., test) categories as seen (resp.,
unseen) categories [5]. Traditional SBIR methods [35] suf-
fer from sharp performance drop in ZS-SBIR setting, be-
cause traditional SBIR methods may take a shortcut by
correlating sketches/images with their category labels and
retrieving the images from the same category as the query
sketch [33]. This shortcut is very effective when test data
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share the same categories as training data, but can hardly
generalize to unseen categories as depicted in Fig. 1.

To overcome the drawbacks of traditional SBIR methods
in ZS-SBIR setting, several ZS-SBIR methods have been
proposed to boost the performance on unseen categories,
which can be categorized into the following groups: 1) [33]
used aligned sketch-image pairs (a sketch is drawn based
on a given image and thus has roughly the same outline
as this image) to learn better correlation between sketches
and images. However, the aligned sketch-image pairs are
either unavailable or very expensive; 2) Some works [6],
[4], [37] employed category-level semantic information to
reduce the gap between seen categories and unseen cate-
gories. Whereas, category-level semantic information like
word vectors [22] are sometimes inaccessible or ambiguous.
3) [19] located the catastrophic forgetting phenomenon
and preserved the knowledge of model pretrained on Ima-
geNet [3]. Despite its competitive performance, it relies on
auxiliary WordNet [9] knowledge and its performance gain
is mainly from the pre-training strategy; 4) [7] proposed
to disentangle the representations of two domains (i.e.,
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sketches/images with their category labels cannot gener-
alize well to unseen categories. Our STRAD method learns
structural correspondence between sketches and images
from seen categories, which can be transferred to unseen
ones.

sketch and image) into domain-independent and domain-
specific representations. Nevertheless, this symmetric dis-
entanglement approach is not well-tailored for SBIR task
and ignores the asymmetric relation between sketch and
image domain, that is, sketches only contain structure in-
formation (e.g., outline, shape) while images additionally
contain appearance information (e.g., color, texture, and
background).

Being aware of the asymmetric relation between sketch
domain and image domain, we conjecture that the key of
sketch-based image retrieval might be successfully match-
ing the structure information between sketches and im-
ages. In this paper, we attempt to learn the structural
correspondence between sketches and images on seen cat-
egories, which could generalize to unseen categories and
facilitate ZS-SBIR task. For example, as shown in Fig. 1,
the structural correspondence between sketches and im-
ages within the same category can be learned based on seen
categories, e.g., the structural similarity between “door”
sketch and “door” image w.r.t. the global/local con-
tour and the layout of different components. In the test
stage, given sketches and images from an unseen category
“church”, without knowing which category they belong to,
we can still verify whether they belong to the same cat-
egory on the premise of their structural similarity learnt
from seen categories.

To obtain the structure features of sketches and images,
we propose a STRucture-aware Asymmetric Disentangle-
ment (STRAD) method to disentangle image feature into
structure feature (e.g., outline, shape) and appearance fea-
ture (e.g., color, texture, and background) while projecting
sketch feature into structure feature only. Our asymmetric
disentanglement method is different from symmetric dis-
entanglement in StyleGuide [7], because our disentangled
representations have explicit meanings (i.e., structure and
appearance) and are specifically designed for SBIR task.
Note that although several previous methods [34], [18] also
intended to obtain the structure information of images by
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directly extracting edge maps from images, the low-level
edge maps obtained in this way may not be very reliable
due to possible noisy and redundant information. In con-
trast, our method could extract high-level robust structure
features from both sketches and images.

Our proposed STRAD method is illustrated in Fig. 2.
We first use a pre-trained model to extract features from
sketches (resp., images) as sketch (resp., image) features.
Then, the image features are disentangled into structure
features and appearance features, while the sketch features
are also projected to the structure space. Furthermore, bi-
directional domain translation is performed through the
structure features and appearance features. Concretely,
for image-to-sketch translation, we project the image fea-
tures to structure features and then generate sketch fea-
tures from the structure features. For sketch-to-image
translation, we project the sketch features to structure fea-
tures, which are combined with variational appearance fea-
tures to compensate for the appearance uncertainty when
generating image features from the sketch features.

Finally, we perform retrieval in all three spaces (i.e.,
structure space, image space, and sketch space), to com-
bine the best of three worlds. Apparently, the retrieval in
structure space and sketch space is structure-aware. Im-
age feature is generated from structure feature and vari-
ational appearance feature. Since variational appearance
feature is category-agnostic, the retrieval in image space
is also structure-aware. The effectiveness of our proposed
STRAD method is verified by comprehensive experimen-
tal results on three large-scale benchmark datasets. Our
main contributions are summarized as follows:

e Based on the asymmetric relation between im-
age domain and sketch domain, we design a
novel STRucture-aware Asymmetric Disentanglement
(STRAD) method to learn structural correspondence
between these two domains.

e We design a hybrid retrieval strategy in three spaces,
where different space has its own speciality and they
can complement with each other to satisfy different
retrieval requirement.

e Comprehensive results on three popular benchmark
datasets show that our method significantly outper-
forms the state-of-the-art methods.

2. Related Work

2.1. Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR)

Zero-shot sketch-based image retrieval (ZS-SBIR) was
proposed by [26]. To reduce the intra-class variance in
sketches and stabilize the training process, semantic infor-
mation was leveraged in many models. In detail, [6] pro-
posed SEM-PCYC to combine the text information along
with image and sketch feature generation and align the
semantical representation in latent-space. [4] proposed
a new large-scale sketch-image dataset for ZS-SBIR and



proposed a triplet loss-based network. [37] utilized the
graph convolution network to align the image and sketch
in the same latent-space. To reduce the gap between
seen and unseen categories, a generative model along with
aligned data pairs was proposed by [33]. To adapt the pre-
trained model to ZS-SBIR without forgetting the knowl-
edge from ImageNet, semantic-aware knowledge preserva-
tion was used in SAKE [19]. To disentangle the repre-
sentations of two domains (i.e., sketch and image) into
domain-independent and domain-specific representations,
a symmetrical disentangle framework was proposed by [7].
However, all of the above methods did not consider the
special relation between images and sketches, and treated
them equally in their models.

2.2. Disentangled Representation

Disentangled representation learning aims to divide the
latent representation into multiple units, with each unit
corresponding to one latent factor (e.g., position, scale,
identity). Each unit is only affected by its corresponding
latent factor, but not influenced by other latent factors.

Disentangled representation learning methods can be
categorized into unsupervised methods and supervised
methods according to whether supervision for latent fac-
tors is available. For unsupervised disentanglement, abun-
dant methods have been developed, including InfoGAN [1],
MTAN [20]. For supervised disentanglement, [14] used
disentangled representation to enhance semi-supervised
learning. [38] proposed DG-Net to integrate discriminative
and generative learning using disentangled representation.
[11] proposed a two-step disentanglement method, which
disentangles the label information from the original repre-
sentation and enables feature reconstruction from decom-
posed features. Besides, supervised disentanglement has
been applied to different tasks, like face recognition [21],
image generation [12], and style transfer [32]. Our work
applies asymmetric disentangled representation learning to
facilitate structure-aware retrieval.

2.8. Domain Translation

Many domain translation approaches, like Pix2Pix [13],
CycleGAN [39] have been proposed, which can translate
figures between two domains (e.g., sketch domain and
image domain). In this subsection, we mainly discuss
the domain translation methods [17], [10] based on dis-
entangled representation. Overall speaking, they disen-
tangle latent representation into domain-specific represen-
tation and domain-invariant representation. In our prob-
lem, structure (resp., appearance) features can be treated
as domain-invariant (resp., specific) representation. The
translation between two domains in previous works [17],
[10] is generally symmetric. In contrast, the translation
between sketch domain and image domain in our prob-
lem is asymmetric because image domain has additional
domain-specific representation compared with sketch do-
main.

3. Methodology

3.1. Problem Definition

In this paper, we focus on zero-shot sketch-based im-
age retrieval, where only the sketches and images from
seen categories are used for training. In the test stage,
our proposed method is expected to use the sketches to
retrieve the images, the categories of which are unseen
during training.

Formally, given a sketch dataset Ssp={(Xsk,:,¥i)|lyi €
Y} and an image dataset Sy ={(Xim.j, y;)|y; € YV}, where
Y is category label set, and (Xs,¥:) (resp., (Xim,j,Y5))
represents a sketch (resp., image) with its corresponding
category label, we follow the zero-shot setting in [26] to
split all categories ) into V' and Y*¢, in which no overlap
exists between two label sets, i.e., V" N Y = (. Based
on the partition of label set ), we can split the sketch
(resp., image) dataset into S and S (resp., S and
Ste). In the training stage, our model can only process
the data in S and S7 . In the test, given a sketch zgy,
our model needs to retrieve the images belonging to the
same category from test image gallery SI¢,.

3.2. Our Framework

An overview of our method is illustrated in Fig. 2. In
this section, we will introduce our method from Asymmet-
ric Disentanglement and Bi-direction Domain Translation.

3.2.1. Asymmetric Disentanglement

Given an image X;,,, and a sketch x4 from the same cat-
egory y , we first use fixed backbone model, i.e., VGG-16
[28], to produce their image feature f;,,, and sketch feature
fsx. For image feature f;,,, we adopt two image encoders
Est and E to disentangle f;,, into image structure fea-
ture f5! and image appearance feature f;,°. Besides, to
project sketch feature fgx to the same structure space as
£5! | asketch encoder E¥} is adopted to obtain sketch struc-
ture feature £5/. The above process is formulated as fol-
lows,

fon =B (fim); £ =B (fin); £ =E(fa). (1)

To capture the structural correspondence between im-
ages and sketches, we expect the structure features from
both images and sketches to be aligned in the same space.
Moreover, in the structure space shared by sketch and im-
age, we expect intra-class coherence and inter-class sepa-
rability across different domains (i.e., sketch domain and
image domain). Specifically, we expect to pull close the
image/sketch structure features of the same category and
push apart the image/sketch structure features from dif-
ferent categories. It has been proved in [19] that a sim-
ple classification loss can accomplish the above task well.
Therefore, we employ a structure classifier on both im-
age structure features and sketch structure features to dis-
tinguish their category labels, by using the cross-entropy
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Fig. 2. An overview of our STRAD method. We first adopt VGG-16 [28] to extract features from images and sketch.
Then we disentangle the image feature into appearance feature and structure feature, through which bi-directional domain
translation is performed between the image domain and the sketch domain.

classification loss:
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where wy and b, are learnable parameters in the struc-
ture classifier corresponding to category k. Recall that y
is the category label of x;,, and x4;. Although the struc-
ture space regulated by Equ. (2) seems sufficient for re-
trieval, the following modules to be introduced can further
help capture the structural correspondence and improve
the generalization ability.

After enforcing the structure features of sketches and
images to the same structure space, we further expect that
the appearance features of images only contain comple-
mentary information (e.g., color, texture, and background)
to structure features. To reinforce the disentanglement of
image features, we impose an orthogonal constraint be-
tween structure and appearance features of images based
on cosine similarity [27]:

ap | gst

Lor = OB £54) = ratmiB(3)

[ L2l 150112
where - means the the dot product between two vectors.
Note that f;? and f5! are the output of ReLU activa-
tion, so co&(f’”’ £t is always non-negative and minimiz-

m?’ Tim

ing Equ. (3) will push cos(f;? £5! ) towards zero.

mm’ im

To learn better disentangled representations and fully
utilize the disentangled image features, we perform bi-

Bi-directional Domain Translation

directional domain translation between the sketch and the
image domain.

For image-to-sketch translation, we aim to translate im-
age feature f;,, to sketch feature through image structure
feature f5!. We employ a decoder Gy, to generate sketch
feature fy by £y = G (f2t). Considering that £, and
s belong to the same category, we enforce the generated
sketch features to be close to the real sketch features from
the same category by

"= [ — Eorll2- (4)

For sketch-to-image translation, we aim to translate
sketch feature f; to image feature through its sketch struc-
ture feature £5{. However, images contain extra appear-
ance information (e.g., color, texture, and background)
compared with sketches, so it is necessary to compen-
sate appearance uncertainty when translating from struc-
ture features to image features. Therefore, in the train-
ing stage, appearance feature f;> could be integrated with
sketch structure feature £} to generate image feature.

During testing, given a sketch, we also hope to generate
its image feature to enable retrieval in the image space.
Nevertheless, we do not have the corresponding appear-
ance feature. A common solution is stochastic sampling.
We introduce a variational estimator V52 to approximate
the variational Gaussian distribution P(z{? |£.7) based
on fiP that is, (uib oib) = VoP(£:P). Then, we use
Kullback-Leibler divergence to enforce P(z;¥ |£:7) to be
close to prior distribution A/(0,1) to support stochastic
sampling:

Lrr = KLN (ki 05,,)[IN(0,1)). ()



After using reparameterization trick [15] to sample vari-
ational appearance feature z;> ., i.e., Zi0 = it + ey
where € is sampled from N(0,1), we employ a decoder
Gim to generate fi,, = Gim([z:P, £51]) based on z;? and
£5f, where [-,-] means concatenating two vectors. Consid-
ering that f,,, has the same category label as f;,, and its
appearance uncertainty comes from f,,,, we enforce £ to
be close to f;,, with

LY = |[fim — fim |2 (6)

By performing image-to-sketch translation, we expect
that the image structure features contain the necessary
structure information to generate sketch features. By per-
forming sketch-to-image translation, we expect that the
appearance features contain the necessary information of
appearance uncertainty to compliment the sketch struc-
ture features when generating image features. Therefore,
bi-directional domain translation could cooperate with
classification loss and orthogonal loss to assist feature dis-
entanglement.

Finally, the full objective function can be expressed as

L=Lopr+Leps+Lrr+LEm+L5E. (7)

3.3. Retrieval Strategy

In the test stage, we perform retrieval in three spaces:
structure, sketch, and image spaces. Given a sketch xg
with sketch feature fy; and an image x;,, with image fea-
ture f;,,, we compare them in three spaces to combine the
best of all worlds.

(1) Structure space: We project f;,, and fy into the
structure space by f5f = Ef! (f;,) and £5 = E% (fo),
so we can calculate the distance in structure space Dy =
L~ cos(3! £20).

(2) Sketch space: For image x;,, based on its image
structure feature f5!, we employ the sketch decoder Gy
to generate its sketch feature £ = G (£1), so we can cal-
culate the distance in sketch space Dg, = 1 — cos(f'sl€7 for).
(3) Image space: For sketch x4, based on sketch struc-
ture feature £ and variational appearance feature z; sam-
pled from A(0,1), we employ image decoder G, to gen-
erate image feature. We can generate N image features
by sampling N times and use the average to represent the
final image feature f}m:

N
p 1
fi = 1 D Gl 3] ®)
i=1
where [-,-] means concatenation of two vectors and z; is

sampled from N(0,1).
So we can calculate the distance in image space Djy,, =

1 — cos(fim, £ir). Finally, we calculate the weighted aver-
age of three distances for the best retrieval:

Dfusion = )\l(Dzm + Dsk) + )\2Dst7 (9)

where \; and )y are hyper-parameters to balance different
spaces and we apply the constraint 2A; + A2 = 1. Since
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sketch feature is generated based on structure feature, re-
trieval in sketch space is obviously structure-aware. Im-
age feature is generated based on structure feature and
variational appearance feature z;, which is sampled from
N(0,1) for any category and category-agnostic. There-
fore, retrieval in image space mainly depends on structure
information and is also structure-aware.

4. Experiment

4.1. Dataset

We evaluate our STRAD method and all the other base-
lines on three large-scale benchmark datasets: Sketchy
[25], TU-Berlin [8], and QuickDraw [4]. Following the same
setting in [26], Sketchy and TU-Berlin are extended with
images obtained from [18].

As for the seen/unseen category split, following [31], we
use the 104/21 split for Sketchy and the 194/56 split in
TU-Berlin for fair comparison in the main submission.
For other kinds data splits, we conduct more experiments
in Supplementary Material. Due to the limitation of space,
the details of datasets, seen/unseen category split, and
implementation are left to Supplementary Material.

4.2. Comparison with Existing Methods

We compare our model with 15 prior methods, which
can be categorized into three categories: sketch-based im-
age retrieval (SBIR), zero-shot learning (ZSL), and zero-
shot SBIR (ZS-SBIR). The SBIR baselines include Siamese
[23], and SaN [35]. The ZSL baselines include ESZSL
[24], SAE [16], and CMT [29]. For a fair comparison, we
use fine-tuned VGG-16 as backbone for all methods ex-
cept SaN, which specifically designs a backbone for SBIR.
Among all the previous works on ZS-SBIR, either two dif-
ferent backbones or a single backbone can be used to ex-
tract image and sketch features. In this paper, we conduct
experiments in both settings. For the “double backbone”
setting, we compare with CVAE [33], [31], SEM-PCYC
[6], Doodle [4], StyleGuide [7], PCMSN [2], SketchGCN
[37], and PDFD [30]. For the “single backbone” setting,
we compare with SAKE [19] because they use single back-
bone in their paper. The difference between the “single
backbone” (SB) and “double backbone” (DB) is whether
we separately fine-tune the backbone on image and sketch.
For the “single backbone” setting, we fine-tune the pre-
trained on the mixture of images and sketches, and pro-
duce only one backbone model to extract image/sketch
features For the “double backbone” setting, we fine-tune
the pre-trained separately on images and sketches, and
produce two backbone model to extract image and sketch
features separately. During training, we fix the backbone
for all methods except for Doodle [4] and SAKE [19]. For
Doodle [4], we strictly follow their paper to train the back-
bone during the training. For SAKE [19], we strictly follow



Table 1. Comparison of our STRAD method and baselines on Sketchy, TU-Berlin, and QuickDraw datasets. (D) is short
for “double backbone” setting and (S) is short for “single backbone” setting. Best results are denoted in boldface in both

settings.
Method Dim Sketchy Ext. TU-Berlin Ext. QuickDraw Ext.
P@200 mAP@200 mAP@all|P@200 mAPQ@200 mAPQall| PQ200 mAPQ@200 mAP@Qall
SBIR SaN [35] 512 | 0.153 0.058 0.055 0.101 0.042 0.047 0.042 0.009 0.039
Siamese [23] 64 | 0.256 0.153 0.158 0.083 0.037 0.041 0.040 0.007 0.038
ESZSL [24] 1024 | 0.209 0.118 0.109 0.085 0.034 0.041 0.063 0.018 0.059
7SI, SAE [16] 300 | 0.261 0.145 0.152 0.104 0.046 0.040 0.068 0.019 0.066
CMT [29] 300 | 0.273 0.158 0.151 0.108 0.049 0.047 0.063 0.017 0.061
SSE [36] 100 | 0.202 0.125 0.131 0.026 0.003 0.006 0.079 0.029 0.081
Simple DB 4096 | 0.321 0.190 0.229 0.146 0.068 0.061 0.071 0.031 0.077
CVAE [33] 4096 | 0.393 0.263 0.291 0.152 0.075 0.077 0.064 0.018 0.063
[31] 512 | 0.428 0.311 0.352 0.191 0.115 0.111 0.072 0.030 0.073
SEM-PCYC [6] 64 | 0.438 0.316 0.372 0.195 0.117 0.108 0.094 0.037 0.112
ZS-SBIR (D) Doodle [4] 4096 | 0.432 0.301 0.317 0.193 0.112 0.107 0.098 0.037 0.109
StyleGuide [7] 4096 | 0.430 0.285 0.348 0.178 0.118 0.103 0.083 0.035 0.101
PCMSN [2] 64 | 0.439 0.325 0.361 0.199 0.122 0.112 0.095 0.041 0.108
SketchGCN [37] 2048 0.451 0.348 0.388 0.213 0.138 0.111 0.097 0.040 0.116
PDFD [30] 512 | 0.478 0.361 0.424 0.229 0.148 0.119 0.112 0.048 0.132
STRAD 1024 | 0.502 0.379 0.458 | 0.245 0.154 0.124 | 0.126 0.054 0.141
Simple SB 4096 | 0.497 0.367 0.399 0.262 0.162 0.122 0.166 0.071 0.173
ZS-SBIR (S) SAKE [19] 512 | 0.519 0.394 0.433 0.287 0.181 0.151 0.184 0.084 0.201
STRAD 1024| 0.537  0.413 0.463 | 0.301 0.199 0.163 | 0.191 0.086 0.221

the training strategy introduced in their paper . Due to
the calculation of mAP@200 in [4, 37] is different from
ours, their reported mAP@200 are different from our re-
produced results. We also report the performance of fine-
tuned single backbone (resp., double backbones) as “Sim-
ple SB” (resp., “Double DB”) in Table 1, where cosine
distance between image and sketch features is used for re-
trieval.

Based on Table 1, we find all SBIR and ZSL baselines
underperform the ZS-SBIR baselines due to their poor
generalization ability from seen categories to unseen ones.
On the TU-Berlin, the results of several methods [19], [6],
[7, 37] are worse than those reported in their papers due
to different seen/unseen category splits. In particular, the
number of unseen categories under our split is twice larger
than that in [19], [37]. Our split criterion also prevents in-
formation leakage from ImageNet-1k to unseen categories.
The overall results on TU-Berlin are lower than those on
Sketchy due to larger number of unseen categories (56 v.s.
21). Furthermore, the overall results on TU-Berlin are
higher than those on QuickDraw since sketches of Quick-
Draw were drawn by amateurs.

In “double backbone” setting, our STRAD excels the
state-of-the-art methods by 2.4% on Sketchy, 1.8% on
TU-Berlin, and 1.4% on QuickDraw in terms of P@200.
In “single backbone” setting, we find that “Simple SB”
outperforms most methods in “double backbone” setting,
which reveals that it might be the best solution for SBIR
task to use a single model to pull close the image and

1Since SAKE [19] starts from backbone model pre-trained on
ImageNet-1k to prevent knowledge forgetting, we do not change their
setting.

sketch space. Starting from “Simple SB”, the performance
gain of STRAD is smaller than that in “double backbone”
setting, because a single backbone has already filtered out
most differences between images and sketches. However,
there still remains extra appearance information in im-
age features, so STRAD also outperforms SAKE [19] and
achieves the best results on all datasets.

To further demonstrate the effectiveness of our method,
we report the results on TU-Berlin following the splits in
[19], the results in generalized ZS-SBIR setting, and the
results of ablation study in Supplementary Material.

4.8. Ablation Study

4.8.1. Effect of Different Feature Spaces

To further study the usefulness of the three different
features, we perform retrieval with these three features on
two backbone settings (i.e. “single backbone” and “double
backbone”) on Table 2. The results show that although
structure space works best among all three spaces, its co-
operation with the other two could further boost the per-
formance.

4.8.2. Usage of Image Appearance Feature

To further reveal the usage of the image appearance fea-
ture, we add the classification loss towards the image ap-
pearance feature (f;-). Considering the sketches do not
have appearance feature and the classification loss is also
applied to structure feature , we use the sketch structure
feature to match with image appearance feature when re-
trieving using appearance feature. In Table 3, we show
the retrieval performance with sketch space, image space,
structure space, appearance space and the combination of
different feature spaces on “double backbone” setting.
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Feature  Sketchy Ext. TU-Berlin Ext. QuickDraw Ext.
Im 0.464 0.214 0.104
Sk 0.477 0.221 0.112
Double St 0.481 0.229 0.118
Backbone Im + Sk 0.489 0.227 0.117
Im + St 0.492 0.235 0.120
Sk + St 0.497 0.239 0.123
STRAD 0.502 0.245 0.126
Im 0.498 0.269 0.164
Sk 0.511 0.281 0.171
Single St 0.518 0.288 0.178
Backhone Im + Sk 0.521 0.289 0.177
Im + St 0.528 0.293 0.185
Sk + St 0.531 0.297 0.188
STRAD 0.537 0.301 0.191

Table 2. Comparison of our STRAD method and the three
feature spaces on Sketchy, TU-Berlin, and QuickDraw
datasets in the ZS-SBIR setting. “Im”, “Sk” and “St” rep-
resent the retrieval performance in “sketch space”, “image
space” and “structure space”. “Im + Sk”, “Im + St”, and
“Sk + St” represent the retrieval performance in the combi-
nation of “image and sketch spaces”, “image and structure
spaces”, and “sketch and structure spaces”. Best results
are denoted in boldface in both settings.
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Feature Sketchy Ext. TU-Berlin Ext. QuickDraw Ext.
Im 0.464 0.214 0.104
Sk 0.477 0.221 0.112
- Lo on fir St 0.481 0.229 0.118
Ap - - -
Comb 0.502 0.245 0.126
Im 0.463 0.215 0.103
Sk 0.476 0.220 0.113
+ Lo on fiF St 0.480 0.230 0.117
Ap 0.279 0.102 0.062
Comb 0.381 0.171 0.097
diff -0.121 -0.074 -0.029

Table 3. Comparison of our STRAD method and the three
feature spaces with or without the “L.; on f;"* on Sketchy,
TU-Berlin, and QuickDraw datasets in the ZS-SBIR set-
ting. “Im”, “Sk”, “St”, “Ap”, and “Comb” represent the
retrieval performance in “sketch space”, “image space”,
“structure space”, “appearance space”, and the combina-
tion of all space. “diff” represents the performance gap of
“Comb” without and with the “L., on f.P”. Best results
are denoted in boldface.

Feature Backbone  Sketchy Ext. TU-Berlin Ext. QuickDraw Ext.
Fixing 0.502 0.245 0.126
STRAD (D) Trainable 0.427 0.178 0.082
diff -0.075 -0.067 -0.044
Fixing 0.537 0.301 0.191
STRAD (S) Trainable 0.442 0.217 0.122
diff -0.095 -0.084 -0.069

Table 4. Comparison of our STRAD method when the
backbone is fixing or trainable on Sketchy, TU-Berlin, and
QuickDraw datasets in term of P@200 . “diff” represents
the performance gap between “Fixing” and “Trainable”.
“S” and “D” represent the single backbone and double
backbone setting.

From the experimental results, we can find that after
applying classification loss to image appearance feature
(fi2), the image appearance feature could be used for re-
trieval, however, the performance on “appearance space”
is quite low. Besides, if we add the appearance space to the
combination of difference spaces, we also find that the over-
all performance decrease by a large margin. We suspect
that the KL loss is in conflict with the classification loss,
which makes the category information within the appear-
ance feature is less than that in structure feature. Con-
sidering that the KL loss is quite important for feature
disentanglement and image feature generation, applying
the classification loss on image appearance feature (fi..)
would be harmful for the overall performance.

4.3.8. Effect of Backbone

To further reveal the effect of backbone, in table 4, we
compare the performance when the backbone is fixing or
trainable in terms of P@Q200. From the results, we can find
that when the backbone is trainable, the retrieval perfor-
mance drops by a large margin, which is mainly caused
by the catastrophic forgetting. For the catastrophic for-
getting problem, SAKE [19] incorporates the knowledge
distillation during training, however, since our main con-
tribution is not knowledge preserving, we simply fix the
backbone during training.



4.4. Case Study
4.4.1. Comparison with Existing Methods

In Fig. 3, we show top-5 retrieval results of STRAD
(double backbone), STRAD (single backbone), SAKE [19],
and StyleGuide [7], based on which we have the following
observations. (a) Our STRAD is adept at capturing the
correspondence between the retrieved images and the given
sketch w.r.t. both local structure information (e.g., door-
case) and global structure information (e.g., global grid
structure of door). Besides, in both “single backbone”
and “double backbone” settings, our STRAD is able to re-
trieve the images with cluttered background (e.g., a bird
with intricate leaves/flowers behind), which benefits from
our structure-aware retrieval in three spaces. The above
advantages come from the combination of three retrieval
spaces. (b) For baselines, SAKE [19] with single back-
bone can retrieve images with cluttered background while
StyleGuide [7] with double backbones can barely tolerate
the complex backgrounds. One possible reason is that us-
ing the same backbone for the sketch domain and image
domain is to share a large amount of parameters for feature
extraction, which would eliminate the background differ-
ences between these two domains. More case study of com-
parison among three retrieval space and the failure cases
can be found in Supplementary Material.

4.4.2. Comparison among Three Retrieval Spaces

In this section, we present some retrieval results of our
STRAD (D) on Sketchy dataset, as shown in Fig. 4. For
each test category of Sketchy dataset, we take one sketch
as an example and present top-10 retrieved images in the
structure space, sketch space, image space, and the combi-
nation of all three spaces from the bottom row to the top
row. The advantages of these three feature space can be
summarized as

e Cluttered background can be handled in the image
space;

e Clean and full objects are prone to be retrieved in the
sketch space;

e Structure space owns the ability to match local infor-
mation.

More details about the analyses of these three feature
spaces can be found in Sec. 7.1 of the supplementary.

4.4.8. Visualization of Image Disentanglement.

In this section, we visualize some images that have sim-
ilar structure or appearance features to demonstrate the
effectiveness of the disentanglement in Fig. 5. For the fa-
cilitation of similarity measurement, we visualize the im-
ages that have similar structure or appearance features
based on the t-SNE visualization for image structure fea-
ture and image appearance in Figure 5. In this figure,
we can find that in image structure space, similar features
usually have similar structure information, like the outline
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poses or shapes. However, in the image appearance space,
similar features usually have similar appearance informa-
tion, like the color and background.

4.4.4. Comparison among Different Datasets

To reveal how the quality of sketches and images affect
the retrieval performance, we visualize the retrieval results
retrieved on different datasets on the same category in Fig-
ure 6. For each dataset, we randomly select three sketches
to retrieve their corresponding images. From the visual-
ization, we can find that the Sketchy dataset has the best
quality of sketch, whereas the QuickDraw owns the worst
one, which make the retrieval performance in Sketchy the
highest. Further, some images in QuickDraw have been
wrongly labeled. For example, in the first row, forth col-
umn of “QuickDraw”, the flag in the air is labelled as
“skyscraper”, which may also affect the retrieval evalua-
tion and performance.

5. Conclusion

In this work, we have studied the problem zero-shot
sketch-based image retrieval (ZS-SBIR) from a new view-
point, i.e., using asymmetric disentangled representa-
tion to facilitate structure-aware retrieval. We have pro-
posed our STRucture-aware Asymmetric Disentanglement
(STRAD) model, with retrieval performed in combina-
tion of three complementary spaces. Comprehensive ex-
periments on three large-scale benchmark datasets have
demonstrated the generalization ability of our model from
seen categories to unseen ones.
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