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ABSTRACT
Image harmonization is an essential step in image composition
that adjusts the appearance of composite foreground to address
the inconsistency between foreground and background. Existing
methods primarily operate in correlated 𝑅𝐺𝐵 color space, leading
to entangled features and limited representation ability. In contrast,
decorrelated color space (e.g., 𝐿𝑎𝑏) has decorrelated channels that
provide disentangled color and illumination statistics. In this paper,
we explore image harmonization in dual color spaces, which sup-
plements entangled 𝑅𝐺𝐵 features with disentangled 𝐿, 𝑎, 𝑏 features
to alleviate the workload in harmonization process. The network
comprises a 𝑅𝐺𝐵 harmonization backbone, an 𝐿𝑎𝑏 encoding mod-
ule, and an 𝐿𝑎𝑏 control module. The backbone is a U-Net network
translating composite image to harmonized image. Three encoders
in 𝐿𝑎𝑏 encoding module extract three control codes independently
from 𝐿, 𝑎, 𝑏 channels, which are used to manipulate the decoder
features in harmonization backbone via 𝐿𝑎𝑏 control module. Our
code and model are available at https://github.com/bcmi/DucoNet-
Image-Harmonization.
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• Computing methodologies → Image manipulation; Com-
puter vision.
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1 INTRODUCTION
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Figure 1: We randomly sample 1000 pixels from 100 real
images in iHarmony4 [9] and plot the correlation between
every two channels in RGB (resp., Lab) color space in the
top (resp., bottom) row. It can be seen that RGB channels
have strong positive correlations, while Lab channels are
decorrelated.

Image composition [29] targets at generating a composite image
by merging foreground and background. Nevertheless, the fore-
ground and background in the obtained composite image might
have appearance discrepancy, which is caused by different lighting,
climate, and capture devices between foreground and background.
To tackle this challenge, image harmonization [8, 9, 35, 38, 44]
modifies the foreground appearance to ensure its compatibility
with the background. Early traditional image harmonization meth-
ods [22, 36, 38, 44] are often designed based on low-level color and il-
lumination statistics. However, with the rapid advance of deep learn-
ing techniques, deep image harmonization methods [8, 9, 20, 35]
have become dominant and achieved impressive results.

Existing deep image harmonization methods have been devel-
oped from different aspects (e.g., attentionmechanism, domain/style
transfer, Retinex theory, color transfer) to address the appearance
mismatch between foreground and background. In detail, some
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works [10, 16] explored attention mechanism to adjust the fore-
ground features more effectively. Besides, some works [7, 9] ap-
proached image harmonization as the translation from foreground
domain to background domain with additional loss to guide the do-
main transfer.Moreover, someworks [13, 14] introduced Retinex [23]
theory to image harmonization tasks by decoupling an image into
reflectance and illumination. Recently, some works [8, 20] consid-
ered the balance between effectiveness and efficiency, and solved
image harmonization in the form of color transfer. Despite the suc-
cess achieved by existing methods, they mainly operate in 𝑅𝐺𝐵

color space to extract and adjust features. However, 𝑅𝐺𝐵 color
space is a correlated color space and the entangled 𝑅𝐺𝐵 features
may increase the workload of existing harmonization methods.

As known to all, an image can be represented in various color
spaces, such as 𝑅𝐺𝐵, 𝑋𝑌𝑍 , or 𝐿𝑎𝑏. These color spaces can be cate-
gorized into two groups: correlated color spaces and decorrelated
color spaces. In correlated color spaces (e.g., 𝑅𝐺𝐵, XYZ ), different
channels are strongly correlated and tend to change simultaneously.
In contrast, in decorrelated color spaces (e.g., YUV, 𝐿𝑎𝑏), different
channels are decorrelated. By taking 𝐿𝑎𝑏 as an example decorrelated
color space, L represents lightness, a represents the spectrum from
green to red, and b represents the spectrum from blue to yellow.
In Figure 1, we plot the correlation between every two channels
in 𝑅𝐺𝐵 (resp., 𝐿𝑎𝑏) color spaces in the top (resp., bottom) row. It
can be observed that RG, RB, and GB in 𝑅𝐺𝐵 color space exhibit
strong positive correlations, while La, Lb, and ab in 𝐿𝑎𝑏 color space
are decorrelated. Considering the correlation within the 𝑅𝐺𝐵 color
space, the extracted 𝑅𝐺𝐵 features may not effectively disentangle
the independent factors of color and illumination statistics, which
potentially complicates the harmonization process [9, 10, 27, 35].
However, the decorrelated 𝐿𝑎𝑏 color space contains decorrelated
factors (i.e., lightness, orthogonal colors) in three channels, serving
as a valuable complement to the entangled features extracted from
𝑅𝐺𝐵 color space. Moreover, recent studies [26, 41] on inharmonious
region localization have revealed that the decorrelated color space
can help identify the inharmonious region, which also motivates
us to explore image harmonization in the decorrelated color space.

Our primary insight for image harmonization is to alleviate the
workload of harmonization process by supplementing the entan-
gled 𝑅𝐺𝐵 features with the disentangled 𝐿, 𝑎, 𝑏 features. To this end,
we propose a novel image harmonization network in Dual Color
Spaces (DucoNet). Our DucoNet comprises a 𝑅𝐺𝐵 harmonization
backbone, an 𝐿𝑎𝑏 encoding module, and an 𝐿𝑎𝑏 control module.
The harmonization backbone is a U-Net network responsible for
harmonizing the input composite image in the 𝑅𝐺𝐵 color space. In
detail, the backbone takes in the 𝑅𝐺𝐵 channels and the foreground
mask, producing the 𝑅𝐺𝐵 channels of the harmonized image. The
𝐿𝑎𝑏 encodingmodule consists of three encoders to extract the 𝐿, 𝑎,𝑏
control codes from 𝐿, 𝑎, 𝑏 channels of the composite image indepen-
dently. The 𝐿𝑎𝑏 control module interacts with the harmonization
backbone to adjust the decoder features with 𝐿, 𝑎, 𝑏 control codes.
Each control code adjusts the decoder features in multiple decoder
layers of the harmonization backbone. Specifically, each control
code is used to generate dynamic convolution kernels [19], which
are applied to the foreground region in the decoder feature maps.
The decoder feature maps manipulated using three control codes
are fused to produce the harmonized image. Considering that 𝐿, 𝑎,

𝑏 channels may contribute differently to various images or even
various pixels, we tend to learn pixel-wise weights for three chan-
nels when fusing the decoder feature maps manipulated using three
control codes, which could also provide hints for the contributions
of 𝐿, 𝑎, 𝑏 channels when harmonizing a specific image.

The effectiveness of our DucoNet is verified through extensive ex-
periments of low/high-resolution harmonization on the benchmark
dataset iHarmony4 [9] and real composite images. Our contribution
can be summarized as follows: 1) To the best of our knowledge, we
are the first to investigate image harmonization in both correlated
and decorrelated color spaces. 2) We propose a novel image har-
monization network in Dual Color Spaces (DucoNet) with 𝐿𝑎𝑏 en-
coding module and control module, which supplements entangled
𝑅𝐺𝐵 features with disentangled 𝐿, 𝑎, 𝑏 features. 3) Extensive exper-
iments on the benchmark dataset demonstrate that our DucoNet
outperforms the state-of-the-art approaches by a large margin.

2 RELATEDWORK
2.1 Image Harmonization
As a subtask in image composition [29], image harmonization aims
to create a harmonious composite image by ensuring that the ap-
pearances of foreground and background are consistent. In the early
stage, traditional image harmonization methods [22] focused on ad-
justing the low-level illumination and color statistics of foreground
to match the background.

In recent years, deep learning based harmonizationmethods have
brought significant advance to this research field. Unsupervised
image harmonization methods [47] were initially explored using
adversarial learning. With the introduction of the first large-scale
image harmonization dataset iHarmony4 [9], supervised image har-
monization methods [1–5, 15, 18, 25, 30, 33, 42, 48] have received
increasing attention. Among them, some works [10, 16, 35] de-
signed attention modules to extract background features and adjust
the foreground features through channel-wise adjustment [10], se-
mantic representation [35, 39], and modulation-demodulation [16].
Additionally, someworks [7, 9, 27] formulated image harmonization
as domain/style translation, and employed adversarial learning [9],
region-aware AdaIn [27], and contrastive loss [7] to transfer the
foreground into the background domain/style. Moreover, some
works [12–14] introduced Retinex [23] theory to image harmoniza-
tion by decomposing the harmonization task into reflectance main-
tenance and illumination adjustment. Recently, some works [8, 20]
treated image harmonization as color-to-color transformation [8]
or image-level regression [20], striking a good balance between ef-
fectiveness and efficiency in high-resolution image harmonization.

Existing methods mainly rely on the correlated 𝑅𝐺𝐵 space to
extract the background features and adjust the foreground features.
However, the entangled 𝑅𝐺𝐵 features may increase the workload
of harmonization network and impede the harmonization perfor-
mance. Our work focuses on dual color spaces (i.e., 𝑅𝐺𝐵 and 𝐿𝑎𝑏),
by using the decorrelated 𝐿𝑎𝑏 color space to generate L, a, and b
control codes for feature manipulation in harmonization backbone.

2.2 Color Spaces
There are multiple color spaces to represent images, such as 𝑅𝐺𝐵,
𝐿𝑎𝑏, XYZ, which can be divided into correlated and decorrelated
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color spaces based on whether each color channel correlates with
each other. The correlated color space can be directly shown in
different monitors and reflect the basic physics rules, for exam-
ple, 𝑅𝐺𝐵 represents three primary colors of light. However, the
correlations among different color channels may prevent the criti-
cal factors to be encoded independently and complicate the color
transformation [32]. On the contrary, the decorrelated color space
usually disentangles some critical factors (i.e., lightness), which
may help extract the corresponding features independently. Most
works in computer vision field predominantly use 𝑅𝐺𝐵 color space.
Nevertheless, some works also utilize multiple color spaces [24, 31]
to achieve the desired effect.

For example, in underwater image enhancement [24, 28, 31, 46],
it is important to incorporate multiple color spaces to enhance
model capabilities. Among them, Peng et al.[31] integrated 𝑅𝐺𝐵,
𝐿𝑎𝑏, and 𝐿𝐶𝐻 color spaces into a loss function to improve the con-
trast and saturation of the enhanced image. Li et al. [24] proposed
a multi-color encoder to enrich the diversity of feature represen-
tations by incorporating the characteristics of 𝑅𝐺𝐵, 𝐻𝑆𝑉 , and 𝐿𝑎𝑏
color spaces into a unified structure. Zhang et al. [46] studied the
near-independent properties of 𝐿𝑎𝑏 color space, and proposed an
adaptive method to enhance the contrast and saturation in 𝑅𝐺𝐵

color. In grayscale image coloring, Wan et al. [40] utilized the 𝑅𝐺𝐵
color space to colorize the initialized super-pixel, and then em-
ployed the YUV color space for color propagation to achieve a
balance between efficiency and effectiveness. In video tracking,
Lai et al. [21] investigated loss designation in terms of different
color spaces (e.g., 𝑅𝐺𝐵, 𝐿𝑎𝑏, and HSV ), revealing that the decorre-
lated color space could force models to learn more robust features.

Our work is the first deep image harmonization method using
multiple color spaces. Specifically, we extract disentangled 𝐿, 𝑎,
𝑏 features from decorrelated 𝐿𝑎𝑏 color space, to supplement the
entangled 𝑅𝐺𝐵 features extracted from correlated 𝑅𝐺𝐵 color space.

2.3 Dynamic Neural Network
Dynamic neural networks aim to dynamically adjust the model
parameters or structures to cope with different conditions, which
can improve the generalization and representation ability of models.

For dynamic neural networks with dynamic parameters, Chen et
al. [6] were the first to propose dynamic convolution, which ag-
gregates multiple convolution kernels based on attention weight.
CondConv [45] introduced the idea of learning sample-dependent
convolution kernels to replace original convolution layers, resulting
in improved model performance for classification and detection
tasks. PAC [37] proposed the pixel-adaptive convolution operation
by combining learnable local pixel features with the filter weights
to change the standard convolution operation. In terms of dynamic
neural networks with dynamic structures, MSDNet [17] proposed a
multi-scale DenseNet with an early-exit strategy that decides when
to exit the network for different samples. ATC [11] developed an
algorithm that enables recurrent neural networks to learn the num-
ber of computational steps between receiving an input and emitting
an output, making previously inaccessible problems manageable.

In our 𝐿𝑎𝑏 control module, inspired by StyleGANv2 [19], we use
L, a, and b control codes to generate dynamic convolution kernels
for feature manipulation, which falls within the scope of dynamic

parameters. This approach enables us to adjust the decoder features
in the harmonization backbone using the L, a, and b control codes.

3 METHOD
In this section, we will set forth to our DucoNet. In detail, we will
first briefly introduce our overall framework in Section 3.1, and
our used harmonization backbone in Section 3.2. In Section 3.3, we
will detail the process to extract the L, a, b control codes. In Sec-
tion 3.4, we will describe how our 𝐿𝑎𝑏 control module (𝐿𝑎𝑏-CM)
exploits the L, a, b control codes to adjust the decoder features in
the harmonization backbone.

3.1 Overview
Given a composite image 𝑰𝑐 and its foreground mask𝑴 , the goal of
image harmonization is adjusting the foreground of 𝑰𝑐 and produc-
ing the harmonized image 𝑰ℎ as output. Prior works [8, 9, 13, 20, 35]
only use the composite image in the 𝑅𝐺𝐵 color space as input. How-
ever, 𝑅𝐺𝐵 color space is a correlated color space, which may in-
crease the workload of existing methods to disentangle independent
factors (e.g., lightness, orthogonal colors), potentially complicating
the harmonization process. Considering that the decorrelated 𝐿𝑎𝑏
color space contains disentangled color and illumination statistics,
we additionally use the composite image with 𝐿𝑎𝑏 channels as input
to help improve the harmonization performance.

As shown in Figure 2, the overall framework consists of three
parts: the harmonization backbone, the 𝐿𝑎𝑏 encoding module, and
the 𝐿𝑎𝑏 control module. Following previous works [10, 35], the
harmonization backbone uses the composite image with 𝑅𝐺𝐵 chan-
nels 𝑰𝑐,𝑅𝐺𝐵 ∈ R𝐻×𝑊 ×3 concatenatedwith the foregroundmask𝑴 ∈
R𝐻×𝑊 ×1 as input. We have also tried using 𝐿𝑎𝑏 color space in har-
monization backbone, but the results are compromised (see Sec-
tion 4.4). Therefore, we still use 𝑅𝐺𝐵 color space in harmonization
backbone. Considering the effectiveness and efficiency, we adopt
iSSAM [35] as our harmonization backbone, which can also be
easily replaced by other harmonization backbones. For the 𝐿𝑎𝑏

encoding module, we use the composite image with 𝐿𝑎𝑏 channels
𝑰𝑐,Lab ∈ R𝐻×𝑊 ×3 concatenated with the foreground mask 𝑴 as in-
put. Considering that the 𝐿, 𝑎, and 𝑏 channels are near-independent,
we process different channels 𝑰𝑐,L, 𝑰𝑐,a, 𝑰𝑐,b ∈ R𝐻×𝑊 ×1 using three
encoders 𝐸𝐿 , 𝐸𝑎 , 𝐸𝑏 separately to obtain the corresponding 𝐿, 𝑎,
and 𝑏 control codes 𝒔L, 𝒔a, 𝒔b ∈ R𝑑𝑠 , 𝑑𝑠 = 256. 𝐿𝑎𝑏 control module
uses 𝐿, 𝑎, and 𝑏 control codes to adjust the decoder feature maps in
the harmonization backbone. Finally, the decoder of harmonization
backbone outputs the harmonized image 𝑰ℎ , which is supervised
by the ground-truth image 𝑰𝑔 using 𝐿1 loss L = | |𝑰ℎ − 𝑰𝑔 | |1.

3.2 Harmonization Backbone
The choice of harmonization backbones should balance effective-
ness and efficiency simultaneously. Therefore, we opt for iSSAM [35]
as our harmonization backbone, which is framed as a U-Net [34]
with four encoder layers and three decoder layers. The first three
encoder layers output features, which are connected with the cor-
responding decoder layers via skip connections to preserve the
encoded information. To tailor for image harmonization, an Spatial-
Separated Attention Module [10] and a blending layer [35] are
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Figure 2: The illustration of our harmonization network with Dual Color Spaces (DucoNet). Given a composite image 𝑰𝑐 and its
foreground mask𝑴 , the harmonization backbone [35] takes RGB channels of composite image (𝑰𝑐,𝑅𝐺𝐵 ) concatenated with𝑴 as
input, and generates the harmonized image 𝑰ℎ . In Lab encoding module, three encoders extract control codes 𝒔L, 𝒔a, and 𝒔b from
L, a, and b channels of composite image 𝑰𝑐,L, 𝑰𝑐,a, 𝑰𝑐,b, respectively, which are used to manipulate the decoder feature maps in
the harmonization backbone. We insert Lab control module (Lab-CM) into each decoder layer. For the 𝑡-th decode feature map
𝑭 𝑡
𝐷
output from the 𝑡-th decoder layer, we use 𝒔L, 𝒔a, and 𝒔b to manipulate 𝑭 𝑡

𝐷
independently through style blocks [19]. Then,

three manipulated decoder feature maps are fused as 𝑭 𝑡𝐷 with learnt pixel-wise weights. Finally, the foreground of 𝑭 𝑡𝐷 and the
background of 𝑭 𝑡

𝐷
are combined as �̂� 𝑡𝐷 and sent back to the decoder to produce the harmonized image 𝑰ℎ .

inserted to the last decoder layer. For more details, please refer to
iSSAM [35].

As mentioned earlier, the harmonization backbone still uses
the composite image with 𝑅𝐺𝐵 channels 𝑰𝑐,RGB ∈ R𝐻×𝑊 ×3 con-
catenated with the foreground mask 𝑴 as input, and outputs the
harmonized result 𝑰ℎ . To adjust the decoder feature maps with the
𝐿, 𝑎, and 𝑏 control codes, each decoder feature map is sent into
our 𝐿𝑎𝑏-CM along with the 𝐿, 𝑎, and 𝑏 control codes, which allows
disentangled 𝐿, 𝑎, 𝑏 features to help produce more harmonious
images. The details of 𝐿𝑎𝑏-CM will be introduced in Section 3.4.

3.3 Lab Encoding Module
The 𝑅𝐺𝐵 color space has been well explored in image harmoniza-
tion tasks [7–10, 13, 14, 16, 20, 27, 35]. Due to the correlation among
𝑅𝐺𝐵 channels, the extracted RGB features may not disentangle the
independent factors (e.g., lightness, orthogonal colors) effectively.
Thus, we additionally use the decorrelated 𝐿𝑎𝑏 color space to sup-
plement 𝑅𝐺𝐵 color space. As introduced in Section 1, 𝐿, 𝑎, and 𝑏
channels in 𝐿𝑎𝑏 color space represent lightness, the spectrum from
green to red, and the spectrum from blue to yellow, respectively.

In the 𝐿𝑎𝑏 color space, we attempt to obtain the control code of
each channel using the respective control encoder. Each encoder
EL, Ea, and Eb) in the 𝐿𝑎𝑏 encoding module has the same structure

as the encoder of the harmonization backbone, followed by a pool-
ing layer and a fully-connected layer. Each encoder extracts the
independent feature from one channel, which serves as the con-
trol code to manipulate the decoder feature maps through our 𝐿𝑎𝑏
control module (𝐿𝑎𝑏-CM). In detail, we first convert the composite
image from 𝑅𝐺𝐵 color space 𝑰𝑐,𝑅𝐺𝐵 ∈ R𝐻×𝑊 ×3 to 𝐿𝑎𝑏 color space
𝑰𝑐,𝐿𝑎𝑏 ∈ R𝐻×𝑊 ×3, and obtain three separate channels 𝑰𝑐,L, 𝑰𝑐,a,
and 𝑰𝑐,b ∈ R𝐻×𝑊 ×1. These three single-channel composite images
are concatenated with the 𝑴 and delivered to the corresponding
control encoders to yield the corresponding control code.

By taking the 𝐿 channel 𝑰𝑐,L as an example, the L control code 𝒔L
is generated through the following steps. We first scale the range of
𝑰𝑐,L to [0, 1], and then concatenate it with𝑴 as input. The concate-
nation is sent into EL to produce the feature map 𝑭𝐿 , which is then
transformed into the L control code 𝒔𝐿 through one pooling layer
AvgPool and one fully connected layers FCL. The whole process
for generating 𝐿, 𝑎, and 𝑏 control codes can be formulated as

𝑭 L = EL (𝑰𝑐,L,𝑴), 𝒔L = FCL (AvgPool(𝑭 L)),
𝑭 a = Ea (𝑰𝑐,a,𝑴), 𝒔a = FCa (AvgPool(𝑭 a)),
𝑭 b = Eb (𝑰𝑐,b,𝑴), 𝒔b = FCb (AvgPool(𝑭 b)) .

(1)

With three control encoders, we get three control codes 𝒔L, 𝒔a,
and 𝒔b corresponding to three channels. They encode the indepen-
dent factors of color and illumination statistics from the composite
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image in 𝐿𝑎𝑏 color space, which can further provide guidance for
decoder feature manipulation in our 𝐿𝑎𝑏 control module.

3.4 Lab Control Module
Our 𝐿𝑎𝑏 Control Module (𝐿𝑎𝑏-CM) aims to migrate useful informa-
tion from the decorrelated 𝐿𝑎𝑏 color space to the 𝑅𝐺𝐵 color space,
by using three control codes to manipulate the decoder feature
maps in the harmonization backbone. Recall that our harmoniza-
tion backbone has three decoder layers and the output feature map
from the 𝑡-th decoder layer is denoted as 𝑭 𝑡

𝐷
. We insert 𝐿𝑎𝑏-CM

after each decoder layer. For the 𝑡-th decoder layer, 𝐿𝑎𝑏-CM takes
𝑭 𝑡
𝐷
along with 𝐿, 𝑎, 𝑏 control codes as input, producing the 𝐿𝑎𝑏-

enhanced decoder feature map �̂�
𝑡
𝐷 . Precisely, we first use three

control codes to get three manipulated feature maps independently,
and then fuse them using learnt pixel weights.
Feature Map Manipulation: By taking the decoder feature map
𝑭 1
𝐷
from the first decoder layer as an example, we attempt to use

three control codes 𝒔L, 𝒔a, and 𝒔b to manipulate 𝑭 1
𝐷
independently

and obtain three manipulated decoder feature maps. In this work,
we adopt the style block proposed in StyleGANv2 [19], which is
essentially dynamic convolution. The style block produces dynamic
convolution kernel using the control code and apply it to the de-
coder feature map.

Specifically, for each color channel 𝑐 from {L, a, b}, we have
one 3 × 3 base convolution kernel𝑾𝑐 , and use control code 𝒔c to
dynamically scale the input channels of 𝑾𝑐 . We first project 𝒔c
to a scale vector 𝒖c using two fully-connected layers, in which 𝒖c
contains the scales for each input channel. The scaling process is
represented by

�̂�
𝑖, 𝑗,𝑘
𝑐 = 𝑢𝑖𝑐 ·𝑤

𝑖, 𝑗,𝑘
𝑐 , (2)

in which 𝑤
𝑖, 𝑗,𝑘
𝑐 is the (𝑖, 𝑗, 𝑘)-th entry in 𝑾𝑐 with 𝑖, 𝑗, 𝑘 enumer-

ating the input channel, output channel, and the spatial location
respectively. 𝑢𝑖𝑐 is the 𝑖-th entry in 𝒖c, representing the scale for
the 𝑖-th input channel. Then, we normalize �̂�𝑖, 𝑗,𝑘

𝑐 as

�̄�
𝑖, 𝑗,𝑘
𝑐 = �̂�

𝑖, 𝑗,𝑘
𝑐

/√︄
(
∑︁
𝑖,𝑘

�̂�
𝑖, 𝑗,𝑘
𝑐 )2 + 𝜖, (3)

where 𝜖 is a small constant to prevent numerical errors. �̄�𝑖, 𝑗,𝑘
𝑐 form

the dynamic convolution kernel �̄�𝑐 , which acts upon the decoder
feature map 𝑭 1

𝐷
to produce the manipulated feature map 𝑭 1

𝐷,L. For
more details of the style block, please refer to StyleGANv2 [19].

With three control codes, we can get three manipulated feature
maps 𝑭 1

𝐷,L, 𝑭
1
𝐷,a, 𝑭

1
𝐷,b. By using P𝑐 to denote the style block for the

color channel 𝑐 , the feature map manipulation can be formulated as

𝑭 1
𝐷,L=PL (𝑭

1
𝐷 , 𝒔L), 𝑭 1

𝐷,a=Pa (𝑭
1
𝐷 , 𝒔a), 𝑭 1

𝐷,b=Pb (𝑭
1
𝐷 , 𝒔b) . (4)

Feature Map Fusion: Considering that 𝐿, 𝑎, 𝑏 channels may con-
tribute differently to various images or even various pixels, we learn
pixel-wise weights {𝑨1

L,𝑨
1
a,𝑨

1
b} for three channels when fusing

three manipulated feature maps {𝑭 1
𝐷,L, 𝑭

1
𝐷,a, 𝑭

1
𝐷,b}. Specifically, we

concatenate three manipulated feature maps and send them to 𝐺1:

[𝑨1
L,𝑨

1
a,𝑨

1
b] = G1

(
[𝑭 1

𝐷,L, 𝑭
1
𝐷,a, 𝑭

1
𝐷,b]

)
, (5)

where G1 is constructed by a 1 × 1 convolution layer and a softmax
layer, {𝑨1

L,𝑨
1
a,𝑨

1
b} are single-channel weight maps. After that, we

fuse three manipulated feature maps (𝑭 1
𝐷,L, 𝑭

1
𝐷,a, 𝑭

1
𝐷,b) using the

predicted pixel-wise weights. Note that we only manipulate the
foreground feature map, aiming to make it compatible with the
background. Thus, the original background feature map in 𝑭 1

𝐷
is

preserved. The above process is represented by

𝑭 1
𝐷 = 𝑭 1

𝐷,L ◦𝑨
1
L + 𝑭 1

𝐷,a ◦𝑨
1
a + 𝑭 1

𝐷,b ◦𝑨
1
b,

�̂�
1
𝐷 = 𝑭 1

𝐷 ◦𝑴1 + (1 −𝑴1) ◦ 𝑭 1
𝐷 ,

(6)

where ◦ means element-wise product and �̂�
1
𝐷 is the final 𝐿𝑎𝑏-

enhanced feature map.
Similar steps can be applied to decoder feature maps 𝑭 2

𝐷
and

𝑭 3
𝐷
to get the 𝐿𝑎𝑏-enhanced feature maps �̂� 2

𝐷 and �̂�
3
𝐷 . The 𝐿𝑎𝑏-

enhanced feature maps are sent back to the decoder of the harmo-
nization backbone to generate the final harmonized image 𝑰ℎ .

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Dataset. Following previous image harmonization works, we
conduct experiments on the benchmark dataset iHarmony4 [9] to
evaluate the effectiveness of our DucoNet, where the iHarmony4 [9]
has been widely used in supervised image harmonization. In detail,
iHarmony4 [9] consists of four sub-datasets, including HFlickr,
Hday2night, HCOCO, and HAdobe5K, with 73,146 samples in total.
For each sample in iHarmony4 [9], it includes a composite image,
its foreground mask, and the corresponding ground-truth image.

We perform both low-resolution and high-resolution image har-
monization based on iHarmony4. For low-resolution harmonization,
we conduct experiments with image size 256 × 256 following pre-
vious works [35]. For high-resolution harmonization, we follow
the experimental setting in CDTNet [8]. Specifically, we perform
training and testing based on the HAdobe5k dataset with image
size 1024 × 1024. Moreover, we also evaluate our trained model
on 100 high-resolution real composite images collected in CDT-
Net [8]. Since real composite images have no ground-truth image
for evaluation, we present the user study results.

4.1.2 Evaluation Metrics. We adopt the evaluation metrics which
are commonly used in previous image harmonizationworks [8, 9, 13,
20, 35, 43], including MSE (Mean-Square-Error), fMSE (foreground
Mean-Square-Error), and PSNR (Peak Signal to Noise Ratio).

4.2 Implementation Details
Our network is implemented with PyTorch 1.10.1, optimized by
Adam optimizer with initial learning rate as 1×10−3. The batch size
is set as 64 and we train our DucoNet for 120 epochs in total. The
learning rate decay starts at epoch 105 and epoch 115 with a decay
factor of 10. The hardware devices used for training are Intel(R)
Xeon(R) Silver 4116 CPU, with 128GB memory and two NVIDIA
GeForce RTX 3090 GPUs. More details about the implementation
can be found in Supplementary.
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Composite iSSAM CDTNet Harmonizer DCCF DucoNet GT

Figure 3: From left to right, we show the composite image ( foreground outlined in green), the harmonized results of iSSAM [35],
CDTNet [8], Harmonizer [20], DCCF [43], our DucoNet, and the ground-truth in iHarmony4 [9] dataset. Best viewed in color
and zoom in.

4.3 Comparison with Start-of-the-Art Methods
Low-resolution Harmonization: We compare our method with
the existing methods. In the low-resolution setting with image size
256× 256, we compare our method with DoveNet [9], RainNet [27],
Instrinsic [14], IHT (Image Harmonization with Transformer) [13],
iSSAM [35], CDTNet [8], Harmonizer [20], and DCCF [43]. The

experiment results are copied from original papers or reproduced
with the released models.

In Table 1, we report the results on four sub test sets and the
whole test set in the low-resolution setting. For the results on the
whole test set, our DucoNet outperforms the SOTA method by a
large margin. Specifically, our DucoNet achieves 15.68% relative
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Method All HCOCO HFlickr HAdobe5k Hday2night
MSE ↓ fMSE ↓ PSNR ↑ MSE ↓ fMSE ↓ PSNR ↑ MSE ↓ fMSE ↓ PSNR ↑ MSE ↓ fMSE ↓ PSNR ↑ MSE ↓ fMSE ↓ PSNR ↑

Composite images 172.47 1387.30 31.63 69.37 1013.27 33.94 264.35 1612.59 28.32 345.54 2137.07 28.16 109.65 1443.05 34.01
DoveNet [9] 52.36 549.96 34.75 36.72 554.55 35.83 133.14 823.64 30.21 52.32 383.91 34.34 54.05 1075.42 35.18
RainNet [27] 40.29 469.60 36.12 31.12 535.40 37.08 117.59 751.12 31.64 42.85 320.43 36.22 47.24 852.12 34.83
Instrinsic [14] 38.71 400.29 35.90 24.92 416.38 37.16 105.13 716.60 31.34 43.02 284.21 35.20 55.53 797.04 35.96

IHT [13] 27.89 295.56 37.94 14.98 274.67 39.22 67.88 471.04 33.55 36.83 242.57 37.17 49.67 736.55 36.38
iSSAM [35] 24.64 262.67 37.95 16.48 266.14 39.16 69.68 443.63 33.56 22.59 166.19 37.24 40.59 591.07 37.72
CDTNet [8] 23.75 252.05 38.23 16.25 261.29 39.15 68.61 423.03 33.55 20.62 149.88 38.24 36.72 549.47 37.95

Harmonizer [20] 24.26 280.51 37.84 17.34 298.42 38.77 64.81 434.06 33.63 21.89 170.05 37.64 33.14 542.07 37.56
DCCF [43] 22.05 266.49 38.50 14.87 272.09 39.52 60.41 411.53 33.94 19.90 175.82 38.27 49.32 655.43 37.88
DucoNet 18.47 212.53 39.17 12.12 211.25 40.23 51.71 353.81 34.65 17.06 141.55 38.87 38.70 527.07 38.11

Table 1: Comparison of different methods with image size 256 × 256 on iHarmony4. ↓ (resp., ↑) indicates that lower (resp., higher)
values are better. The best results are highlighted in bold face.

Method MSE ↓ fMSE ↓ PSNR ↑
Composite images 352.05 2122.37 28.10

iSSAM [35] 25.03 168.85 38.29
CDTNet-256(sim) [8] 31.15 195.93 37.65

CDTNet-256 [8] 21.24 152.13 38.77
Harmonizer [20] 20.12 150.99 38.45

DCCF [43] 21.12 171.17 38.38
DucoNet 10.94 80.69 41.37

Table 2: Comparison of different methods with image size
1024×1024 onHAdobe5k. ↓ (resp., ↑) indicates that lower (resp.,
higher) values are better. The best results are denoted in bold
face.

improvement over CDTNet [8] in terms of fMSE and 16.23% relative
improvement over DCCF [43] in terms of MSE. Considering each
sub test set, our DucoNet achieves the best results on HCOCO,
HFlickr, and HAdobe5k, which indicates the generation ability our
method. On Hday2night, our method achieves the best results in
terms of fMSE and PSNR, and the third best result for MSE, probably
due to the small-scale training set and test set (only 311 images for
training and 133 image for test).

We further visualize the harmonized results of different methods
in Figure 3. It can be seen that ourmethod can producemore visually
appealing and harmonious results, that are closer to the ground-
truth real images. These visualisation results again demonstrate
the effectiveness of our proposed method.
High-resolution Harmonization: Recently, there are also a
few works that focus on high-resolution image harmonization. In
the high-resolution setting with image size 1024 × 1024, we com-
pare our DucoNet with iSSAM [35], CDTNet [8], Harmonizer [20],
DCCF [43] inHAdobe5k subset with image size 1024×1024. CDTNet-
256 is the CDTNet [8] model with the input size of harmonization
backbone being 256× 256, and CDTNet-256(sim) is a simplified ver-
sion of CDTNet-256. The experimental results for DCCF, CDTNet-
256 and CDTNet-256(sim) are copied from the corresponding paper.
Harmonizer did not report their results in the same high-resolution
setting as CDTNet [8], so we train the corresponding models on

HAdobe5k training set with image size 1024 × 1024 for fair com-
parison.

In Table 2, we report the results on HAdobe5k in the high-
resolution image harmonization setting. Our DucoNet outperforms
all the baselines by a large margin in terms of all evaluation metrics
in high-resolution image harmonization. Specifically, our DucoNet
achieves 45.63% relative improvement over Harmonizer [20] in
terms of MSE and achieves 46.56% relative improvement over Har-
monizer [20] in terms of fMSE.

4.4 Ablation Study
As described in Section 3, our DucoNet consists of the harmoniza-
tion backbone, the 𝐿𝑎𝑏 encoding module, and the 𝐿𝑎𝑏 control mod-
ule (𝐿𝑎𝑏-CM). In this section, we demonstrate the effectiveness of
each component and each color space by ablating each component
or comparing with alternatives.

The results of our ablation studies are presented in Table 3. Firstly,
when only using the harmonization backbone, we compare using
the input composite image with 𝑅𝐺𝐵 channels (row 1) and using
the input composite image with 𝐿𝑎𝑏 channels (row 2). By compar-
ing row 1 and row 2, we see that 𝑅𝐺𝐵 channels outperforms 𝐿𝑎𝑏
channels, revealing that 𝑅𝐺𝐵 channels are still more suitable as
the input for the U-Net structure. Note that although the inputs to
the network are different, the loss and evaluation metrics are all
calculated based on 𝑅𝐺𝐵 channels for fair comparison. In detail,
when using the input composite image with 𝐿𝑎𝑏, we first generate
the harmonized image with 𝐿𝑎𝑏 channels and then convert it into
𝑅𝐺𝐵 color space for loss calculation and evaluation.

To evaluate the effectiveness of 𝐿𝑎𝑏 color space for feature ma-
nipulation, we treat the 𝐿𝑎𝑏 (resp., 𝑅𝐺𝐵) channels as a whole input
in the encoding module and use a single control code in the control
module, leading to the results in row 3 (resp., row 4). Comparing row
3 and row 4, we can find that the 𝐿𝑎𝑏 channels are more helpful for
feature manipulation, because 𝐿𝑎𝑏 color space could supplement
𝑅𝐺𝐵 color space with extra useful guidance.

In row 5, we study a simple way to fuse 𝑅𝐺𝐵 and 𝐿𝑎𝑏 features. In
particular, we treat the 𝐿𝑎𝑏 channels as a whole input in encoding
module and send multi-scale encoder features to the decoder via
skip-connection, in the same way as the backbone encoder. The
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𝑅𝐺𝐵 𝐿𝑎𝑏 Fusion MSE ↓ fMSE ↓ PSNR ↑
1 iSSAM - - 24.64 262.67 37.95
2 - iSSAM - 28.13 296.59 37.20
3 iSSAM E(𝐿𝑎𝑏) CM 19.30 222.22 38.93
4 iSSAM E(RGB) CM 22.66 245.38 38.62
5 iSSAM E(𝐿𝑎𝑏) SC 21.76 243.06 38.47
6 iSSAM E(L) CM 21.43 234.70 38.72
7 iSSAM E(a) CM 23.32 256.34 38.39
8 iSSAM E(b) CM 23.46 255.29 38.36
9 iSSAM E(L,a,b) CM-avg 20.45 227.71 38.88
10 iSSAM E(L,a,b) CM-pix 18.47 212.53 39.17

Table 3: The ablation study of ourDucoNet. “iSSAM" indicates
using the harmonization backbone [35] in the correspond-
ing color space. “E(Lab)", “E(RGB)", “E(L)", “E(a)", “E(a)", and
“E(L,a,b)" indicate that we treat Lab as a whole, RGB as a
whole, only L, only a, only b, and L,a,b separately as input in
the Lab encoding module. “SC" is short for skip-connection.
“CM" is short for Lab-CM. “CM-avg” indicates average fusion.
“CM-pix” indicates weighted fusion with pixel-wise weights.

obtained performance is worse than row 3, which demonstrates the
effectiveness of feature manipulation in our 𝐿𝑎𝑏-CM.

Furthermore, we conduct experiments by treating each individ-
ual 𝐿, 𝑎, 𝑏 channel as the input in the encoding module and use the
single control code in the control module (row 6 v.s. row 7 v.s. row 8).
Experimental results shows the 𝐿 channel is the most effective one
among all three channels. To provide some insights for the impor-
tance of 𝐿 channel, we calculate the amount of change between the
foreground area of composite image and the ground-truth image
for each channel (𝐿, 𝑎, and 𝑏), the average amount of change in
three channels are 25.90, 3.88, and 6.65 respectively over the entire
test set. The average amount of change in 𝐿 channel is significantly
higher than the other two channels, which corroborates that merely
using 𝐿 channel could achieve compelling results (row 6).

Finally, we conduct experiments to verify the effectiveness of the
pixel-wise weighting strategy. Comparing row 9 with row 10, we
can find that simply averaging the manipulated feature maps {𝑭 𝑡

𝐷,L,
𝑭 𝑡
𝐷,a, 𝑭

𝑡
𝐷,b} undermines the representation ability of 𝐿𝑎𝑏-CM, since

𝐿, 𝑎, 𝑏 channels contribute differently to the harmonization results.

4.5 Visualization of Weight Map
To show the effectiveness of our proposed 𝐿𝑎𝑏-CM, we visualize the
weight maps {𝑨3

L,𝑨
3
a,𝑨

3
b} from the third decoder layer in Figure 4.

Recall that we only manipulate the foreground region of decoder
feature map and the background pixel weights do not contribute
to the final output. Thus, we mask out the background pixels and
only show the pixel weights in the foreground region in Figure 4,
in which brighter pixel indicates higher weight. For composite
image and ground-truth, we also show the average value in 𝐿, 𝑎, 𝑏
channels within the foreground region, which reflects the amount
of change in each channel.

Based on Figure 4, we observe that the learnt weight map is
closely related to the amount of change in each channel. Recall

Figure 4: From left to right, we show the composite image
( foreground outlined in green), the ground-truth, the har-
monized results of our method, visualization of {𝑨3

L,𝑨
3
a,𝑨

3
b}

in Lab-CM. In composite image and ground-truth image, we
also show the average value in L, a, b channels within the
foreground region. Best viewed in color and zoom in.

that 𝐿, 𝑎, and 𝑏 channels in 𝐿𝑎𝑏 color space represent lightness,
the spectrum from green to red, and the spectrum from blue to
yellow, respectively. When the lightness between foreground and
background in the composite image is contrastively different (row
1), the value of 𝐿 channel would change greatly after harmonization,
in which case the weight map 𝑨𝐿 corresponding to the 𝐿 channel
has the largest values. When the foreground object has dominant
color (row 3) or the lighting has color cast (row 2), the value of
the corresponding color channel (e.g., red, blue) would vary greatly
after harmonization, in which the corresponding weight map has
the largest values (Figure 4).

4.6 Real Composite Images
Following previous works, we also evaluate different methods on
100 real composite images in CDTNet [8]. The visualization results
of different baseline methods are provided in the Supplementary.
Since these real composite images do not have ground-truth image,
we conduct user study to compare different methods, which is also
left to the Supplementary.

5 CONCLUSION
In this paper, we have explored image harmonization in dual color
spaces, where we additionally use the decorrelated color space
𝐿𝑎𝑏 to relieve the burden of the harmonization process when com-
pared with using 𝑅𝐺𝐵 color space alone. We have proposed a novel
network DucoNet, which manipulates the foreground of the de-
coder feature maps from the harmonization backbone using the
control codes from 𝐿𝑎𝑏 color space. Experiments conducted on the
benchmark dataset have shown that our approach significantly
outperforms the state-of-the-art methods.
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