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Memorize, Associate and Match: Embedding
Enhancement via Fine-Grained Alignment

for Image-Text Retrieval
Jiangtong Li , Liu Liu, Li Niu , and Liqing Zhang , Member, IEEE

Abstract— Image-text retrieval aims to capture the seman-
tic correlation between images and texts. Existing image-text
retrieval methods can be roughly categorized into embedding
learning paradigm and pair-wise learning paradigm. The for-
mer paradigm fails to capture the fine-grained correspon-
dence between images and texts. The latter paradigm achieves
fine-grained alignment between regions and words, but the high
cost of pair-wise computation leads to slow retrieval speed.
In this paper, we propose a novel method named MEMBER by
using Memory-based EMBedding Enhancement for image-text
Retrieval (MEMBER), which introduces global memory banks to
enable fine-grained alignment and fusion in embedding learning
paradigm. Specifically, we enrich image (resp., text) features with
relevant text (resp., image) features stored in the text (resp.,
image) memory bank. In this way, our model not only accom-
plishes mutual embedding enhancement across two modalities,
but also maintains the retrieval efficiency. Extensive experiments
demonstrate that our MEMBER remarkably outperforms state-
of-the-art approaches on two large-scale benchmark datasets.

Index Terms— Image-text retrieval, memory network, attention
mechanism, transformer.

I. INTRODUCTION

RECENTLY, with the rapid growth of multimedia data on
the internet, vision and natural language have become

the main aspects for artificial intelligence to recognize our
world. To bridge the gap between these two modalities, cross-
modal modeling, including image-text retrieval [1]–[4], image
captioning [5], visual question answering [6], and visual
commonsense reasoning [7], has drawn more attention from
both academia and industry. Image-text retrieval is one of the
fundamental tasks, aiming to capture correspondence between
images and texts. Researchers have proposed lots of works and
made great progress in this task. Existing works can be roughly
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Fig. 1. Illustrative Figure of (a) embedding learning paradigm, (b) pair-wise
learning paradigm and (c) our method.

categorized into two groups: embedding learning methods and
pair-wise learning methods.

As a straightforward solution, early works attempted to
directly map images and texts from different modalities to
a shared embedding space by enforcing constraints such as
triplet ranking loss [2] or correlation maximization [8], which
belong to embedding learning paradigm and are illustrated in
Figure 1 (a). This type of works learned global representations
within each modality and used different techniques like atten-
tion mechanism [9] or graph convolution networks [10] to filter
out irrelevant information, and then calculated the similarity
matrix through euclidean distance or cosine distance. However,
such methods can only capture coarse correspondence between
images and texts. Therefore, they work well in simple retrieval
scenarios, but are not suitable in more realistic cases that
involve multiple objects.

To learn fine-grained correspondence, recent research works
further explored to perform fine-grained alignment between
regions and words, which belong to pair-wise learning par-
adigm and are illustrated in Figure 1 (b). Lee et al. [3]
built object-level correspondence and adopted stacked cross
attention to align regions and words. To further enhance the
cross-modal interaction, Chen et al. [4] proposed IMRAM to
iteratively match each image-text pair with recurrent attention
mechanism. Chen and Luo [11] proposed to aggregate the
affinity between regions and words in each image-text pair.
These methods are capable of capturing region-word alignment
between images and texts by a complex fine-grained alignment
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scorer, and have achieved state-of-the-art performance on
several benchmark datasets. Unfortunately, the retrieval speed
of these methods has been slowed down largely. One of the
reasons is that the fine-grained alignment requires calculating
all the matching relations between every region and every word
in each image-text pair. Besides, the number of all image-text
pairs is huge, which makes this process quite time-consuming.

Comparing the embedding learning paradigm and the
pair-wise learning paradigm, we conclude that the fine-grained
alignment across modalities is essential for the performance
of image-text retrieval, however, inefficient pair-wise scor-
ing in pair-wise learning paradigm leads to slow retrieval
speed. Besides, scoring the images and texts in a shared
embedding space is the key to accelerate retrieval speed,
whereas the coarse correspondence captured by embedding
learning methods limits its application to complex sce-
narios with multiply objects. To combine the advantages
from both learning paradigms, we attempt to enhance the
embedding represenation via fine-grained alignment. For this
purpose, as illustrated in Figure 1 (c), we propose Memory-
based EMBedding Enhancement for image-text Retrieval
(MEMBER) method, which integrates key-value memory
banks to help our model perform fine-grained alignment
and fusion in the embedding learning paradigm. Unlike pre-
vious embedding learning methods, our model learns two
types of embeddings: self-embedding and cross-embedding,
where self-embedding is generated within each modality
and cross-embedding is generated by interacting with the
cross-modal memory bank.

Corresponding to two types of embeddings, our proposed
MEMBER method has two stages: self-learning stage and
memory-based cross-learning stage, as illustrated in Figure 2.
In self-learning stage, we first extract region (resp., token)
features from each image (resp., text), and then adopt a
siamese transformer to encode region and token features into
corresponding self-features. After that, they are compacted to
self-embeddings to facilitate retrieval. We design a key-value
image (resp., text) memory bank, where each key-value pair is
self-embedding and self-features for images (resp., texts) in the
whole training set. Then, we associate each image (resp., text)
with relevant cross-modal information in the memory bank to
enhance the image (resp., text) embedding. Specifically, given
an image (resp., a text), we use its compact self-embedding
to search the text (resp., image) memory bank for relevant
text (resp., image) self-features. Then, we perform fine-grained
alignment and fusion between its self-features with the relevant
cross-modal self-features. Finally, we perform retrieval in both
self-embedding space and cross-embedding space. Although
fine-grained alignment and fusion is required in this stage,
it is only performed between each image (resp., text) and a
few relevant texts (resp.„ images), which is different from and
faster than pair-wise learning methods. (see Sec.IV-E)

Our cross-learning stage is inspired by cognitive sci-
ence [12]. When seeing a new sentence, people may first focus
on a related topic or experience in the memory, associate with
some related scene fragments from the topic or experience,
link some noun/verb groups with these scene fragments,
and understand this sentence better by combining all the

information together. This process coincides with the “mem-
orize and associate” behavior of our model, that is, utilizing
the key-value memory banks to recall relevant fine-grained
features and adopting the fine-grained alignment and fusion
for embedding enhancement. Note that some works [13],
[14] also adopted memory bank to help image-text retrieval.
Song et al. [13] applied category-based memory in image-text
retrieval, where the category information is unavailable in
our situation. Ji et al. [14] only used several memory slots to
restore and forget the batch information, which only utilized
the representation of previous few batches and the memory
slots lack explicit meanings. In contrast, our memory banks
hold global memory with explicit meanings, i.e., pairs of com-
pact self-embedding and self-features. Besides, the function of
our memory banks is to help images (resp., texts) extract useful
cross-modal information from relevant texts (resp., images),
which is also different from previous works [13], [14].

The effectiveness of our proposed MEMBER method is ver-
ified by comprehensive experimental results on two benchmark
datasets. Our main contributions are summarized as follows:

• To combine the advantages of embedding learning and
pair-wise learning paradigms, we integrate fine-grained
alignment into embedding learning paradigm.

• We propose a novel MEMBER method, which utilizes
global memory to accomplish fine-grained alignment and
fusion for mutual embedding enhancement.

• Comprehensive experiments on two large-scale bench-
mark datasets reveal that our method significantly out-
performs the state-of-the-art methods.

II. RELATED WORK

A. Image-Text Retrieval

The key issue of image-text retrieval is to measure the
semantic similarity between a text and an image. For this
purpose, existing works can be categorized into two groups,
embedding learning methods [2], [15], [16] and pair-wise
learning methods, [11], [17]–[19].

The embedding learning methods aim to learn a
modal-invariant and representative embedding for each image
and text. Rasiwasia et al. [8] proposed Canonical Correlation
Analysis (CCA) to optimize the statistical values to learn
linear projection matrices, which motivates many follow-up
works [20]–[22] to learn more accurate projection matrices
for better correlation performance. Kiros et al. [23] adopted
the hinge-based triplet loss to learn the image and text
embeddings in a shared space. Faghri et al. [2] paid atten-
tion to the hardest negative with the triplet ranking loss.
He et al. [16] combined classification loss, clustering loss and
ranking loss together, along with a new proposed benchmark,
which performed retrieval among three different modalities.
Wu et al. [15] applied self-attention layers to discover the
relationships among regions (resp., words) in images (resp.,
texts). Li et al. [10] performed reasoning with Graph Con-
volutional Networks [24] to generate features with semantic
relationships.

The pair-wise learning methods aim to calculate the simi-
larity between each image-text pair more accurately with fine-
grained alignment. Karpathy et al. [1] extracted objects from
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images, and matched them with words in texts to explore the
fine-grained image-text correspondence. Huang et al. [25] pro-
posed a cross-modal attention to selectively attend to several
pairs of instances of images and texts, by predicting pair-
wise instance-aware saliency maps. Wu et al. [26] proposed
an online learning method to learn the similarity function
across modalities. Peng et al. [27] paid much attention on
unsupervised image-text retrieval, which combined the image-
to-text translation and fine-grained alignment together to cap-
ture the image-text correspondence under unsupervised man-
ner. He and Peng [28] proposed a fine-grained visual-textual
representation method, where the text attention was used to
discover discriminative visual-textual pairwise information for
boosting categorization performance and the intra-modality
and inter-modality information was also preserved to gen-
erate complementary fine-grained representation To capture
structure information in images and texts, Wang et al. [17]
designed two particular scene graph encoders and explored
the graph matching from both object-level and relationship-
level. Liu et al. [29] utilized extra information (i.e., the text
semantic parsing labels) to parse images and texts into graphs,
and adopted the graph structured network to match them.

Cross attention is also widely used in pair-wise learning
methods to boost the fine-grained alignment between images
and texts. Peng et al. [30] proposed recurrent cross-attention
network to capture modality-specific cross-modal similarity.
Huang et al. [31] designed bi-directional cross-attention net-
work to explore the spatial-semantic relation for image-text
retrieval. Lee et al. [3] obtained the image (resp., text) fea-
tures by attending each region (resp., word) feature to all
word (resp., region) features. To utilize multi-level visual-
textual alignment, Peng et al. [32] proposed MAVA to incor-
porate local-level, global-level, and relation-level information
together. Besides, with the help of the cross attention networks,
Chen et al. [4] proposed IMRAM to match fragments across
different modalities iteratively. DP-RNN [11] utilized the
similarity scores to enhance the final features. Note that, these
models can capture the image-text correspondences well by
fine-grained alignment, but their retrieval speed will be very
slow when the retrieval space is large, which makes them
unsuitable for real-world application. Unlike these models, our
method provides a new perspective: fine-grained alignment
and fusion for mutual embedding enhancement, which can
maintain relatively fast retrieval speed.

B. Memory-Enhanced Network

Memory-enhanced network was first proposed by
Weston et al. [33] to enhance the network’s long-term
memory capability by augmenting it with a series of extra
memory components, where the memory components can be
read and written to store input facts and to retrieve supporting
facts given an input query. Sukhbaatar et al. [34] extended
the idea and developed the first end-to-end memory network
(MemN2N) with a recurrent attention model over a large
external memory. Graves et al. [35] proposed Neural Turing
Machine, which adopted a key-value structure to tackle the
problem of sorting and recalling during memory writing and

memory reading. A similar key-value memory mechanism
was also adopted by Miller et al. [36] to utilize different
encoding schemes for memory reading. To get a soft-selection
over memory slots, Kim et al. [37] proposed a new structured
attention network, which used a conditional random field to
capture structural dependencies in memory slots.

Memory-enhanced networks have become popular in the
fields of computer vision [38] and natural language process-
ing [39], [40]. For example, Zhu et al. [41] proposed Iter-
ative Querying Model (IQM) to encode human knowledge
into an extra memory bank for more accurate reasoning.
Park et al. [38] adopted Long-short Term Memory (LSTM)
to capture the personalized feature during sequence modeling.
Wang et al. [39] proposed to enhance the RNN decoder in
neural machine translator with a pre-defined external mem-
ory, which aimed to capture relevant information during the
sequence decoding. And Cheng et al. [40] extended the neural
machine reader with an external memory network to store
contextual information of input document.

Memory-enhanced network is also widely used in multi-
modal modeling. For example, the stacked attention networks
(SANs) [42] regarded the whole image as a memory bank
and then used the text semantic representation to search for
all the regions in a given image to infer the corresponding
answers. Song et al. [13] proposed a category-based modal-
shared memory bank for cross-modal retrieval. Ji et al. [14]
restored the inter-modal and intra-modal information in the
memory bank to narrow the modality gap between images and
texts. Note that the memory banks used in these works either
only captured category information or utilized local informa-
tion. In contrast, our work not only utilizes global memory
with explicit meanings, but also facilitates fine-grained align-
ment and fusion between two modalities.

III. METHODOLOGY

In this section, we will introduce our MEMBER method,
which is short for Memory-based EMBedding Enhancement
for image-text Retrieval. In Sec. III-A, we will present the
problem definition and notation. In Sec. III-B, we will intro-
duce the background knowledge of transformer, which is
used multiple times in our model. In Sec. III-C, we will
detail our MEMBER method, revealing how to utilize global
cross-modal information efficiently.

A. Problem Definition

Suppose we have a set of training images {x1
i , . . . , xNi

i } and
a set of training texts {x1

t , . . . , xNt
t } with provided matching

correspondence (each image has several matched texts), where
Ni and Nt are the number of images and texts, respectively.
Our method builds global memory banks based on the train-
ing images and texts, and learns self-embeddings and cross-
embeddings of images/texts. In the test stage, given images
and texts, we can obtain their self-embeddings and cross-
embeddings, based on which the similarity of each image-text
pair is calculated to perform retrieval. For clarity, in the
rest part of this paper, we will omit the index number of
images/texts, and all the similarity is measured under cosine
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Fig. 2. The flowchart of our MEMBER method. We first adopt BERT [43] and Faster R-CNN [44] (bottom-up attention [45]) to extract token (resp., region)
features from texts (resp., images), based on which we perform self-learning to obtain the self-embeddings. Then, memory-enhanced cross-learning is followed
to obtain the improved cross-embeddings. The structures of transformer encoder and decoder layers are shown on the right.

similarity. We use XT to denote the transpose of X and 1 to
denote an all-one column vector.

The overall structure of our proposed MEMBER method
is illustrated in Figure 2. We first represent each image as a
sequence of region features Ie and each text as a sequence
of token features Te. Through a self-transformer encoder Es ,
we can obtain the image self-features Is and text self-features
Ts . Then, a pooling layer is adopted to compact Is (resp.,
Ts ) into an image (resp., a text) self-embedding is (resp., ts ),
which is used to perform retrieval in self-embedding space and
memory search. We set up an image (resp., a text) memory
bank which stores the image (resp., text) self-embeddings and
their corresponding self-features of all training images (resp.,
texts). Although all training texts and images are stored in the
memory bank by default, actually, only using around 12,000
texts and 2,400 images can achieve comparable results (see
Sec. IV-D). By using text (resp., image) memory bank and
cross-transformer encoder Ec, we can obtain enhanced image
(resp., text) cross-features Ic (resp., Tc). Another pooling layer
is adopted to compact Ic (resp., Tc) into an image (resp.,
a text) cross-embedding ic (resp., tc). Finally, we perform
retrieval in both self-embedding and cross-embedding spaces.

B. Background on Transformer

We use transformer encoder and decoder [46] to encode and
decode sequences of features in our method, which are widely
used and have achieved great success in many areas, such
as language modelling [43] and cross-modal retrieval [15].
Given two sequences of features, the transformer encoder can
align these two sequences and accomplish information fusion.
A transformer encoder (resp., decoder) contains multiple trans-
former encoder (resp., decoder) layers, with the structure of
each layer shown in Figure 2.

Each transformer encoder layer is constructed by a
multi-head attention sub-layer and a feed-forward sub-layer.
The multi-head attention sub-layer takes queries Q, keys K,
and values V as input. Q ∈ Rnq×d , K ∈ Rnk×d , and

V ∈ Rnv×d are all sequences of features, where d is the feature
dimension, nq , nk , and nv are the length of queries, keys, and
values, respectively. In practice, K is usually identical with
V, i.e., K = V. According to whether Q is identical with V,
we can divide transformer encoder layer into self-transformer
encoder layer (Q = V) and cross-transformer encoder layer
(Q �= V). For each query in Q, the attention sub-layer
calculates its similarities with all keys in K, and obtains
the weighted average of corresponding values in V as the
attended value. Besides, transformer encoder layer employs the
multi-head attention mechanism, which calculates the attended
values based on multiple projections. Specifically, Q, K, and
V are projected to lower dimension h times respectively using
h projection matrices. Then h attention weight A j ∀ j ∈ [1, h]
is calculated to produce the attended values H j ∀ j ∈ [1, h]:

A j = Sof tmax(
(QWQ

j )(KWK
j )T

�
d̂

),

H j = A j VWV
j , (1)

in which WQ
j , WK

j , WV
j ∈ Rd×d̂ are projection matrices with

d̂ = d
h . Then, h attended values can be obtained by

M H (Q, K, V) = [H1, . . . , Hh]WO , (2)

where WO ∈ Rhd̂×d is a projection matrix, [H1, . . . , Hh]
means concatenation, and M H (·, ·, ·) is short for Multi-Head.

Then a feed-forward sub-layer is applied on the top of
the multi-head attention sub-layer, which consists of two
linear transformations with a ReLU activation between them.
For different positions, they use the same linear transforma-
tions, while the parameters from layer to layer are different.
Moreover, residual connections are employed around both
multi-head attention sub-layer and feed-forward sub-layer, fol-
lowed by layer normalization [47]. Based on M H (Q, K, V),
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the entire transformer encoder layer can be formulated as

X = L N(Q + M H (Q, K, V)), (3)

F F N(X) = max(0, XW1 + 1bT
1 )W2 + 1bT

2 , (4)

T F E(Q, K, V) = L N(X + F F N(X)), (5)

where X ∈ Rnq×d , W1 ∈ Rd×d̄ , W2 ∈ Rd̄×d , b1 ∈ Rd̄×1,
b2 ∈ Rd×1. L N(·) is short for Layer Normalization. And
T F E(·, ·, ·) represents a TransFormer Encoder layer, with
the output size being nq × d , completing information fusion
between Q and V. Intuitively, for self-transformer encoder
layer, we represent query Q by itself; for the cross-transformer
encoder layer, we represent query Q by a different value V.

Transformer encoder is formed by stacking multiple trans-
former encoder layers T F E(·, ·, ·), in which the output of
previous layer is replicated as the input queries, keys, and
values for next layer. We use transformer encoder in both self-
learning (Sec. III-C.1) and cross-learning stage (Sec. III-C.2).

The transformer decoder shares a similar structure as the
transformer encoder, except an extra multi-head attention sub-
layer with side input V̂ shown in Figure 2. We use transformer
decoder to generate texts from image features (Sec. III-C.3).
For more details of transformer, refer to Vaswani et al. [46].

C. Our Method

In this section, we will introduce our self-learning stage
in Sec. III-C.1 and memory-enhanced cross-learning stage
in Sec. III-C.2. Then, we will describe our loss function in
Sec. III-C.3 and discuss our retrieval strategy in Sec. III-C.4

1) Self-Learning Stage: Given an image xi and a text xt as
a pair of inputs, we use different feature extractors to represent
each of them as a sequence of feature vectors.

a) Region features extraction: To capture the fine-grained
region information in each image, we employ bottom-up
attention [45] to extract convolutional feature for each image
region. Specifically, we follow Lee et al. [3] and use the Faster
R-CNN model [44] to extract the region features. Therefore,
an image is represented as a sequence of image region features
Ie ∈ Rni ×di = [ie1, . . . , ieni

] ordered by confidence score, where
ni is the number of regions and di is region feature dimension.

b) Token features extraction: Motivated by the improve-
ment achieved in the natural language processing, we apply
the transformer encoder to extract word features of each
text, which are rich in semantics. In particular, a pre-trained
BERT [43] is employed to generate context-sensitive token
features. Through this model, we can represent each text as a
sequence of features Te ∈ Rnt ×dt = [te

1, . . . , te
nt

], where nt is
the number of tokens and dt is token feature dimension.

c) Self encoding: To encourage the information sharing
among regions (resp., words) within each sequence of image
region (resp., text token) features, we apply a self-transformer
encoder introduced in Sec. III-B to learn better image (resp.,
text) features. First, we project region features and token
features into the same dimension d , which is formulated as

Id = IeWi + 1bT
i , Td = TeWt + 1bT

t , (6)

where Wi ∈ Rdi×d , bi ∈ Rd×1, Wt ∈ Rdt×d , bt ∈ Rd×1.

Then, we employ a self-transformer encoder Es , where the
input query, key, and value are all Id (resp., Td ), and obtain
the image (resp., text) self-features Is (resp., Ts):

Is = Es(Id , Id , Id ), Ts = Es(Td , Td , Td ). (7)

In detail, given the projected region features Id (resp.,
projected token features Td ), for each item in Id (resp.,
Td ), we calculate its attention weights with all the items
in Id (resp., Td ), and obtain the attended values (see Equ.
(1) and (2)). Then, we fuse the attended values with Id

(resp., Td ) to enhance itself (see Equ. (3), (4), and (5)).
In this way, Es encourages information propagation among
region (resp., token) features within each image (resp., text)
to learn better image (resp., text) self-features Is (resp.,
Ts ) [46]. Regularly, we employ different transformer encoders
for images and texts separately. To save parameters, motivated
by Chopra et al. [48], we utilize a siamese self-transformer
encoder, where images and texts features share a same trans-
former encoder.

To obtain compact representation, a pooling layer is
employed to compact image (resp., text) self-features into an
image (resp., text) self-embedding is (resp., ts). We design
three strategies for this pooling layer:

• first: select the first vector in image (resp., text) self-
features as the self-embedding [43].

• mean: average all vectors in image (resp., text) self-
features as the image (resp., text) self-embedding.

• max: aggregate the image (resp., text) self-features by
choosing the max value in each dimension as the image
(resp., text) self-embedding.

We employ triplet loss to pull close the self-embeddings of
matched images and texts (see Sec. III-C.3), so that self-
embeddings can be used for memory search in Sec. III-C.2
and the final retrieval.

2) Memory-Enhanced Cross-Learning Stage: Given image
(resp., text) self-embeddings and self-features, we attempt to
enhance them with cross-modal information. For this purpose,
we construct an image (resp., text) memory bank to store
the global information of all training images (resp., texts).
In the following, we will take the text memory bank as an
example. For the j -th slot in text memory bank, the key k j

t
is the text self-embedding of the j -th training text and the
value V j

t is the corresponding text self-features. Given an input
image, we intend to learn its cross-embedding enhanced by
relevant fine-grained text information in the text memory bank.
In particular, we first search relevant texts in the text memory
bank, and then use the self-features of relevant texts to enrich
the self-features of this image via fine-grained alignment and
fusion.

a) Memory update: The text self-embeddings and self-
features are consistently learned during training. In order to
update the memory bank in time and avoid re-calculating self-
embeddings/features, we choose to continuously replace the
key-value pairs in the memory bank with the self-embeddings
and self-features after each training step.

b) Memory query and response: Given image self-
embedding is of input image xi , we first calculate the cosine
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similarity between is and each key k j
t in this memory bank,

where cos(is, k j
t ) = is ·k j

t

||is ||2||k j
t ||2

. Then we select the top nm

most relevant texts (the key-value pairs) in the memory bank
as the memory responses {(kri

t , Vri
t )|nm

i=1}. Note that in the test
stage, a test image does not have matched texts in the text
memory bank. To enhance the generalization ability to test
set, we filter out the matching pairs before getting the top nm

memory responses during training. After that, each memory
response weight is calculated by

αm
j = exp(cos(is, k j

t ))
� nm

i=1 exp(cos(is, kri
t ))

. (8)

Note that although we use global memory, the query and
response are based on self-embeddings, which makes this step
very efficient even for potentially large training set. We also try
storing partial training set in memory banks, which our method
is still effective with small memory bank (see Sec. IV-D).

c) Cross encoding: Now for input image xi , we have
its image self-features Is , memory response values Tm

r =
{Vr1

t , . . . , V
rnm
t }, and associated memory response weights

{αm
1 , . . . , αm

nm
}. We design two fusion strategies, i.e., early-

fusion and late-fusion, to fuse the information of image
self-features and text memory responses. The difference lies
in whether we perform cross-modal information fusion before
or after weighted average. For early-fusion strategy, we first
calculate the weighted average of memory response values Tm

r
based on αm . Then we obtain image cross-features by

Tm =
nm�

j=1

V
r j
t ∗ αm

j , Ic = Ec(Is , Tm , Tm), (9)

where Ec is a cross-transformer encoder. As explained in
Sec. III-B, Ec performs fine-grained alignment and fusion
between Is and Tm , producing enhanced features Ic.

Considering that V
r j
t in Equ. (9) have different length

and simply averaging the memory response values may be
ineffective, we introduce the late-fusion strategy. Particularly,
we fuse each response value with the image self-features
through the cross-transformer encoder, and then calculate the
weighted average of outputs as the image cross-features Ic:

Ic
j = Ec(Is , V

r j
t , V

r j
t ), Ic =

nm�

j=1

Ic
j ∗ αm

j . (10)

As mentioned before, to enhance the image feature with
the text memory responses, in both Equ. (9) and (10), we use
the image self-feature (Is ) as the query and use the weighted
text response (Tm) or original response value (V

r j
t ) as the key

and value. At length, for each item in Is , we first calculate
the attention weight with all the items in Tm or V

r j
t , and

obtain the attended values (see Equ. (1) and (2)). Then,
we fuse the cross-modal attended values with Is to enhance
the image self-feature with cross-modal fine-grained alignment
and fusion (see Equ. (3), (4), and (5)).

Finally, the same pooling layer in Sec. III-C.1 is
employed to compact the image cross-features Ic into an
image cross-embedding ic. Note that we use transformer
encoder in cross-learning stage for fine-grained alignment and

fusion between image self-features Is and memory response
values Tm

r .
Analogous to text memory bank, we also have an image

memory bank. Given an input text xt , we can obtain its cross-
features Tc and cross-embedding tc via memory-based cross-
modal enhancement in a similar way.

3) Loss Function: To enforce the distance of matched
image-text pairs closer than unmatched ones, we use triplet
ranking loss [4], [10] in both self-embedding space and
cross-embedding space. Following Faghri et al. [2], we put
emphasis on the hardest negatives, i.e., the negatives closest to
each training query. For a positive pair (i, t), a hardest negative
image embedding î, and a hardest negative text embedding t̂,
we define the triplet loss as

L tri (i, t) = [β − S(i, t)+S(i, t̂)]++[β − S(i, t)+S(î, t)]+,

(11)

where β serves as a margin parameter and [x]+ = max(x, 0).
We adopt the cosine similarity as S(·, ·). For computational
efficiency, rather than selecting the hardest negatives in the
entire training set, we use the hardest one in each mini-batch.

In addition, the learned image self-features and cross-
features (Is and Ic) of an input image are supposed to
have the ability to generate its matched text. Following
Vaswani et al. [46], we use the transformer decoder (see
Figure 2) to generate text from image features, where the input
queries, keys, and values are all masked original token features
Te = [te

1, . . . , te
nt

], and the side input V̂ is image self/cross-
features. We introduce a generation loss by maximizing the
log-likelihood of predicting matched text:

L ge(I, Te) = −
nt�

k=1

log p(te
k|te

1, . . . , te
k−1, I, θ), (12)

where θ is the parameters of transformer decoder and
I indicates image self/ross-features. We substitute self/cross-
embeddings into Equ. (11), and substitute self/cross-features
and token features into Equ. (12), leading to final loss function:

L =L tri (is , ts)+L ge(Is , Te)+ L tri (ic, tc) + L ge(Ic, Te).

(13)

4) Retrieval: We propose two strategies to integrate both
self-embedding and cross-embedding space: embedding com-
bination and similarity combination. The former strategy first
adds self-embeddings and cross-embeddings to get combined-
embeddings, and then calculates the similarities using the
combined-embeddings. The latter strategy first calculates the
similarities based on self-embeddings and cross-embeddings
separately, and then averages two types of similarities.

IV. EXPERIMENT

A. Experiment Setup

1) Dataset: We evaluate our MEMBER method and all
the other baselines on two large-scale benchmark image-text
retrieval datasets: Microsoft COCO [50] and Flickr30K [51].

Microsoft COCO [50]: originally consists of 82,783 training
images and 40,504 validation images, and each image is
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TABLE I

COMPARISON WITH EXISTING MODELS ON FLICKR30K. SELF, CROSS, AND COMB REPRESENT THE RETRIEVAL PERFORMANCE ON
SELF-EMBEDDING SPACE, CROSS-EMBEDDING SPACE, AND THE COMBINATION OF THESE TWO SPACES

annotated with five text descriptions. Following the split in
Lee et al. [3], we select 5,000 validation images and 5,000
test images from the original validation set and then add the
rest 30,504 images from the validation set into the training
set. The testing results are reported for both averaging over 5
folds of 1K test images and directly testing on the full 5K test
images as Li et al. [10] and Chen et al. [4].

Flickr30K [51]: consists of 31,000 images collected from
the Flickr website. Each image corresponds to five human
annotated texts. We follow the split in Lee et al. [3], by using
1,000 images for validation, 1,000 images for testing, and
29,000 images for training.

2) Evaluation Metrics: To compare our proposed method
with state-of-the-art methods, we adopt the same evalua-
tion metrics on both datasets as Chen et al. [4]. Specifically,
we adopt Recall at K (R@K) to measure the performance
of bi-directional retrieval tasks, i.e., retrieving texts given an
image (Text Retrieval) and retrieving images given a text
(Image Retrieval). We report R@1, R@5, and R@10 on both
datasets. To further demonstrate the effectiveness of our pro-
posed method, we also report an extra metric “R@sum”, which
is the summation of all evaluation metrics as Chen et al. [4].

3) Implementation Details: We implement our method
using PyTorch [52], which is trained on one GTX 1080 Ti
GPU. We use Adam [53] optimizer with β1 = 0.5 and
β2 = 0.999 to train the model for 30 epochs. For the learning
rate, we start with learning rate 0.0002 and decay the learning
rate by 0.1 after every 10 epochs. We use a mini-batch size
of 128.

On both datasets, for token feature extraction, we follow
Wu et al. [15] and use the pre-trained weights of BERT
model [43] which has 12 transformer layers, 12 heads, 768
hidden units for each token, and 110M parameters in total;
for region feature extraction, we follow Chen et al. [4] and
use the Faster R-CNN model [44] with ResNet-101 [54]
pre-trained by Anderson et al. [45] on Visual Genomes [55].
For transformer encoder and transformer decoder, the hid-
den dimension d and number of heads h are set to 512
and 4, respectively. We stack two transformer encoder

(resp., decoder) layers for our transformer encoders (resp.,
decoder). Memory banks are updated during training and the
memory response size nm for both memory banks is set
as 5. The pooling strategy for both self-learning and cross-
learning stages is set as “max”. We choose the late-fusion (see
Sec. III-C.2) and similarity combination (see Sec. III-C.4) as
fusion strategy and retrieval strategy. For loss function, the
margin β is set as 0.05.

B. Comparison With Existing Methods

In this section, we compare our method with eight prior
methods, which include three embedding learning models
and five pair-wise learning models. For embedding learning
models, we compare with M3A-Net [14], VSRN [10], and
SAEM [15], where M3A-Net adopted a local memory bank
to enhance the embedding and SAEM adopted pre-trained
BERT to extract token representation. For pair-wise learning
models, we compare with SCAN [3], CAMP [49], PFAN [19],
DP-RNN [11], MAVA [32], and IMRAM [4], all of which
use attention mechanism to enhance the pair-wise matching.
Except for M3A-Net [14], all the other methods applied Faster-
RCNN [44] to extract image region features. The state-of-the-
art results for both learning paradigms are highlighted in bold.

The performance on Flickr30K dataset is shown in Table I,
where our proposed MEMBER method outperforms all the
existing methods on all evaluation metrics by a large mar-
gin. Compared with the state-of-the-art embedding learning
method VSRN [10], the performance gains of our method
are 6.2% on text retrieval (R@1), 4.8% on image retrieval
(R@1), and 22.2% on R@sum. Besides, our method can
also outperform the state-of-the-art pair-wise learning model
IMRAM-full [4] by 3.4% on text retrieval (R@1), 5.6% on
image retrieval (R@1), and 20.6% on R@sum.

To further reveal the effect of pre-trained BERT features,
we conduct extra experiment without using the pre-trained
BERT feature for text representation and the experiment results
are shown in the Table I and Table II. Based on the experiment
results, without the pre-trained BERT feature, our method
still outperform all the methods in both embedding learning
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TABLE II

COMPARISON WITH EXISTING METHODS ON MICROSOFT COCO. SELF, CROSS, AND COMB REPRESENT THE RETRIEVAL PERFORMANCE IN
SELF-EMBEDDING SPACE, CROSS-EMBEDDING SPACE, AND THE COMBINATION OF THESE TWO SPACES

paradigm and pair-wise learning paradigm in terms of both
R@1. Besides, we can find that the pre-trained BERT features
have larger impact on the Flickr30K, since the data size of the
Flickr30K are much less than the Microsoft COCO dataset.
Furthermore, we also find that the impact of the pre-trained
BERT feature is not quite large (about 1.0-2.0 % in Flickr30K
and 0.5-1.0 % in Microsoft COCO), which mainly due to the
following three reasons, 1) we integrate the global memory
bank and the cross-model information to enhance the embed-
ding representation, which make the information across the
whole dataset well shared; 2) we follow the structure of BERT
and also utilize the transformer structure in both self-learning
stage and cross-learning stage, which make the information
can be shared between both modalities; 3) the BERT is training
in only text modality, therefore, the pre-trained BERT feature
may not fit in cross-model situation.

The performance on Microsoft COCO dataset is shown
in Table II. In both 1K and 5K setting, our method can
outperform existing methods with a large gap on R@1.
Compared with the best baselines in both learning paradigms,
i.e. VSRN [10] and IMRAM-full [4] in 1K test set, our
method achieves an improvement of 2.3% and 1.8% on text
retrieval (R@1), and 0.9% and 2.0% on image retrieval (R@1),
respectively.

By comparing the improvement of our method on both
datasets, we find the improvement on Flickr30K is more
significant. We conjecture that images in Microsoft COCO
have fewer objects and simpler relations, which compromises
the enhancement from fine-grained alignment and fusion.

Besides, the performance of cross-embedding is always better
than that of self-embedding, which indicates the effect of our
memory-based cross-modal enhancement.

C. Ablation Study

By taking Flickr30K as an example, we perform a series
of experiments to verify the effect of different modules in
our model. In Sec. IV-C.1, we analyze the impact of different
loss terms. In Sec. IV-C.2, we experiment some alternative
choices on pooling strategy, fusion strategy, retrieval strategy,
and token features. In Sec. IV-C.3, we study the impact of
different memory response sizes. In Sec. IV-C.4, we study the
effect of different memory bank arrangements. In Sec. IV-C.5,
we study the effect of different fusion strategy arrangements.
In Sec. IV-C.6, we study the effect on different hyper-
parameters, including the hidden dimension d, the number of
heads h, and the margin β. The text retrieval R@1, image
retrieval R@1, and R@sum of MEMBER(Comb) are reported
in this section.

1) Effect of Loss Term: As shown in Table III, the impact
of L c

ge is larger than that of L s
ge, because the quality of

cross-embedding is more important for the retrieval perfor-
mance. Besides, when we remove all the losses (i.e., L c

tri and
L c

ge) used in cross-learning stage, we find that the performance
of our self-embedding also drops about 1% and 3% in text
and image retrieval respectively, because our model is trained
end-to-end and the gradient from cross-learning stage can also
boost the performance of self-embedding.
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TABLE III

THE ABLATION STUDY OF LOSS TERMS AND TOKEN EMBEDDINGS.
L c

tri , L s
ge , AND L c

ge ARE SHORT FOR L tri (ic, tc), L ge(Is , T e), AND

L ge(Ic, T e) IN EQU. (13). � (Resp., ×) MEANS ADDING (Resp.,
REMOVING) THIS LOSS TERM DURING TRAINING. T IS SHORT

FOR TEXT RETRIEVAL, AND I IS SHORT

FOR IMAGE RETRIEVAL

TABLE IV

THE ABLATION STUDY ON SOME ALTERNATIVE CHOICES OF “POOLING”,
“FUSION”, AND “RETRIEVAL”. FOR “TOKEN”, BERT MEANS WE USE

PRE-TRAINED BERT MODEL TO EXTRACT TOKEN FEATURES AND
RANDOM MEANS WE RANDOMLY INITIALIZE TOKEN EMBED-

DINGS AND UPDATE THEM DURING TRAINING

Fig. 3. The text retrieval R@1, image retrieval R@1, and R@sum variance
of our method when using different memory response sizes.

2) Alternative Choices: As shown in Table IV, the “max”
pooling strategy outperforms the other two, because the “max”
pooling strategy can capture the most striking characteristics
of each dimension. For fusion strategy, the late-fusion can
handle fine-grained alignment for texts of different lengths
separately, resulting in better performance than early-fusion.
The difference between two retrieval strategies is minor
and “similarity combination” strategy is slightly better than
“embedding combination” strategy.

Following Wu et al. [15], we adopt pre-trained BERT to
extract the token features. To further verify the effectiveness
of our method, we also try to randomly initialize token
embeddings and update them along with training. Comparing
the last row of Table IV with other baselines in Table I, our
method still outperforms all of them.

3) Effect of Memory Response Size: As shown in Figure 3,
the best memory response size for text retrieval R@1, image
retrieval R@1, and R@sum is 5. Besides, as the memory
response size increases, the model performance on all three
metrics first increases and then decreases. This might be
because that when the memory response size is large, the
noise in the memory responses degrades the quality of the

TABLE V

THE EFFECT OF DIFFERENT MEMORY BANK ARRANGEMENTS. IMAGE
CE (Resp., TEXT CE) MEANS THE TYPE OF MEMORY BANKS USED

TO ENHANCE THE IMAGE(RESP., TEXT) CROSS-EMBEDDING. TEXT

BANK, IMAGE BANK, BOTH, AND / REPRESENT TEXT MEMORY

BANK, IMAGE MEMORY BANK, BOTH OF THESE TWO MEM-
ORY BANKS, AND NONE OF THESE MEMORY BANKS

cross-embeddings. We also find that the text retrieval per-
formance drops faster than image retrieval as the mem-
ory response size increases. We conjecture that the image
retrieval ability is weaker than the text retrieval ability (see
Table I), therefore, extracting cross-modal information from
the image memory bank may introduce more noise to the text
cross-embedding.

4) Effect of Memory Banks Arrangement: To further study
the effect of our text and image memory banks, we allow the
image (resp., text) self-embedding to search on image memory
bank, text memory bank, and both of these two memory banks.
The memory response size for each memory bank is set as 5.

As shown in Table V, we can find that using text
(resp., image) memory bank to enhance the image (resp.,
text) cross-embedding is the best strategy for our model.
Whereas, if we get the memory response values from the
memory bank of the same modality, the performance of
our model in combine-embedding space is better than the
performance in self-embedding (See Tables I and IV.), but
the improvement is limited. Besides, when we compare the
first, the second and the last row in Table V, we can find
that the cross-embedding enhanced by both memory banks
underperforms the cross-embedding enhanced by a single
same/cross modality memory bank. We suspect that modality
gap between memory response values from both memory
banks would degrade the quality of cross-embedding, because
cross-encoder needs to fuse both text and image information
into the text (resp., image) self-features for text (resp., image)
cross-features.

5) Effect of Fusion Strategy Arrangement: In Table IV,
we perform experiments on early- and late-fusion strategies,
but we keep the strategies for generating image and text
cross-embedding the same. Here, we study the cases of using
different fusion strategies to generate cross-embeddings.

As shown in Table VI, if we generate image
cross-embedding and text cross-embedding with different
fusion strategies, the performance of our model drops sharply.
We conjecture that the shared cross-transformer encoder leads
to the bad compatibility of different fusion strategies in a
model.
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TABLE VI

THE EFFECT OF DIFFERENT FUSION STRATEGY ARRANGEMENTS. IMAGE
CE (Resp., TEXT CE) MEANS THE FUSION STRATEGY USED TO

GENERATE IMAGE (Resp., TEXT) CROSS-EMBEDDING. EARLY AND

LATE REPRESENT EARLY-FUSION AND LATE-FUSION

STRATEGIES RESPECTIVELY

TABLE VII

THE EFFECT OF DIFFERENT HYPER-PARAMETERS. d, h AND β REPRESENT

THE HIDDEN DIMENSION, THE NUMBER OF HEADS
AND THE MARGIN RESPECTIVELY

6) Effect of Hyper-Parameters: To verify the robustness of
our model, we report the results using different combinations
of hidden dimension d, number of heads h, and margin β.

From Table VII, we can find that the performance of our
model remains stable as the hyper-parameters change in a
reasonable range. For margin β, if it is too small, the distance
between positive and negative image-text pairs would be too
small to be distinguished, whereas, if it is large, the general-
ization ability of our model will also be affected negatively.
For hidden size d, if it is too small, the model might lose
the information in self-embedding and cross-embedding space
when projecting token features (resp., region features) from
token feature size dt (resp., region feature size di ) to the hidden
size d . Otherwise, the increasing amount of parameters in our
model can also lead to over-fitting and poor generalization
from training set to test set.

D. Analysis on Memory Bank Size

For the experiments in Table I and II, the image (resp., text)
memory bank consists of all the training images (resp., texts).
To analyze the effect of memory searching space, we randomly
select a subset from all training images (resp., texts) as the
new image (resp., text) memory bank. Besides, the training
and retrieving processes share the same usage ratio, which
is the ratio of the selected images (resp., text) to the all
training images (resp., texts). Then we conduct experiments
on both Flickr30K and Microsoft COCO datasets, and report
the text retrieval R@1, image retrieval R@1, and R@sum of
MEMBER(Comb) in Table VIII.

TABLE VIII

THE EFFECT OF MEMORY BANK USAGE RATIO ON FLICKR30 AND
MICROSOFT COCO (1K). USAGE RATIO, BANK SIZE(T), AND BANK

SIZE(I) REPRESENT TRAINING INSTANCE USAGE RATIO, TEXT

MEMORY BANK SIZE, AND IMAGE MEMORY BANK SIZE

For Flickr30K dataset, we can find that using about 60%
training images and texts for memory search can achieve com-
parable results, but more training images and texts continue
to bring improvements. What’s more, for Microsoft COCO,
using only about 20% of training instances can achieve the
comparable performance with the state-of-the-art performance.
Comparing the size of text (resp. image) memory bank
between Flickr30K and Microsoft COCO, we can conclude
that about 120,000 texts and 24,000 images are enough to
build the memory bank for our proposed MEMBER, which
saves lots of time when the training set is large.

E. Time Complexity Analysis

Given N images and M texts, the time complexity of
retrieval for embedding learning methods is O(k1 N M +
k2(M + N)), and that for pair-wise learning methods is
O(k3 N M + k4(M + N)), where the k1, k2, k3, and k4 are
time complexity of inner product of two vectors, embed-
ding generation in embedding learning methods, calculating
pair-wise similarity with fine-grained alignment, and feature
preparation in pair-wise learning methods. Usually, these four
time complexities satisfy k2 ≈ k3 ≈ k4 � k1, so embedding
learning methods are much faster than pair-wise learning
methods.

The process of generating self/cross-embedding is relatively
complex due to fine-grained alignment and fusion, but they
are only performed based on top-nm memory responses for
each image and text. So our model is still more efficient than
pair-wise learning methods.

To verify that our MEMBER strikes a good balance between
efficiency and effectiveness, we compare the retrieval time
with two embedding-learning methods (i.e., VSRN [10] and
SAEM [15]) and three pair-wise learning methods (i.e.,
SCAN [3], PFAN [19], and IMRAM-full [4]) based on their
released codes and hyper-parameters on Flickr30k test set,
which contains 1,000 images and 5,000 texts to perform bi-
directional retrieval. For fair comparison, all methods are run
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Fig. 4. Examples of image retrieval and text retrieval results. We show the top 5 retrieved texts for each image query and top 3 retrieved images for each
text query. The correct text (resp., image) retrieval results are in green color (resp., boxes) and the incorrect ones are in red color (resp., boxes).

TABLE IX

RETRIEVAL TIME COMPARISONWITH EXISTING MODELS ONFLICKR30K
TEST SET. FOR EMBEDDING LEARNING METHODS, THEY ONLY CON-

TAIN k1 AND k2 PART; FOR PAIR-WISE LEARNING METHODS,
THEY ONLY CONTAIN k3 AND k4 PART. MEMBER MEANS

OUR MEMBER IN COMBINED SPACEWITH FULL MEMORY
BANK AND MEMBER(60%) MEANS THAT WE ONLY

USE 60% TRAINING IMAGES AND TEXTS TO BUILD
THE MEMORY BANKS (SEE IV-D)

on a computer with RYZEN 3700x CPU@3.60GHz, 32GB
memory and one GPU of GTX 1080TI with 11GB memory.

From Table IX, we Þnd that thek2 part for embedding learn-
ing methods and thek4 part for pair-wise learning methods are
quite similar. Even though our model has a relatively complex
feature encoder, we only spend about 15% more time ink2
part than most of existing methods. Moreover, thek1 part for
embedding learning methods is much faster than thek3 part for
pair-wise learning methods, which also veriÞes our theoretical
analysis above. Therefore, our model is much more efÞcient
than the pair-wise learning methods. Besides, the reduction in
the memory bank size cannot save much time, which reveals
that the memory search process does not cost much time.
Totally, our retrieval time is slightly longer than SAEM [15]
and VSRN [10], but our performance is signiÞcantly better
than SAEM [15] and VSRN [10] (see Tables I and II).

TABLE X

THE EFFECT OF MEMORY BANK SIZE ON THE INFERENCE TIME OF
FLICKR30. BANK SIZE(T), BANK SIZE(I), SELF, SEARCH, CROSSREP-

RESENT THE TEXT MEMORY BANK SIZE, THE IMAGE MEMORY
BANK SIZE, THE INFERENCE TIME OF SELF TRANSFORMER

ENCODER, THE INFERENCE TIME OF MEMORY SEARCH,
AND THE INFERENCETIME OF CROSS

TRANSFORMERENCODER

Further, to provide more detailed analysis towards the
inference speed of our model, in Table X, we provide the
inference time of all three parts (i.e. self-transformer encoder,
memory search and cross transformer encoder) of our model
with different memory bank sizes. We can Þnd that as the
memory bank size changes, the time spent by self-transformer
encoder and cross transformerencoder is relatively stable,
and the time spent by memory search changes from 5.4s
to 10.8s as the memory banks size changes from 29,000
texts and 5,800 images to 145,000 texts and 29,000 images.
Note that, the memory search is Þnished on CUDA device,
therefore, the time variation is not proportional toO(nm),
where n is the size of the memory bank andm is the size
of inference dataset. Besides, the cross encoding between the
image or text self-features and all the memory response values
can also be done on CUDA device in parallel, which make
inference time ratio between cross transformer encoder and
self-transformer encoder less than the memory response size,
i.e. 5. In fact, if we set the memory bank size around 120,000
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Fig. 5. Examples of image retrieval and text retrieval results. Follow a certain selection rule, we select three images and three texts to compare with
VSRN [10] and IMRAM-full [4]. We show the top 5 retrieved texts for each image query and top 3 retrieved images for each text query. The correct text
(resp., image) retrieval results are in green color (resp., boxes) and the incorrect ones are in red color (resp., boxes).
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Fig. 6. The returned images (resp., texts) from the memory bank with the input text (resp., image). The local correspondences between images and texts are
highlighted with different colors.

texts and 24,000 images, the memory search spends the
shortest time in these three parts. Based on these experiment
results and aforementioned theoretical analysis, our model has
the speed advantage of embedding learning paradigm and is
suitable for online test as other models in embedding learning
paradigm.

F. Case Study

In Figure 4, we provide some text retrieval and image
retrieval results. For each image (resp., text) query, we show
top-5 (resp., top-3) ranked texts (resp., images), where mis-
matched texts (resp., images) are marked as red (resp.,
enclosed by red boxes). These results show that our MEMBER
method can retrieve the matching images or texts with a
relatively high rank. Besides, our method can also capture
local correspondences. For example, in the Þrst image retrieval
samples, the Òred helmetÓ and Òdirt roadÓ can be well matched.
However, for some confusing cases, our model still cannot
distinguish some subtle changes in background, like the ÒcurbÓ
in the third image retrieval samples.

In Figure 5, we visualize another three text retrieval samples
and three image retrieval samples, and compare with the
state-of-the-art models in embedding learning paradigm,i.e.
VSRN [10] and pair-wise learning paradigm,i.e. IMRAM [4].
To follow a certain principle and avoid deliberate sampling,
we Þrst sort all images along with their corresponding texts
in validation set of Microsoft COCO by increasing the COCO
id to get the sorted id for images and texts. Since each image
corresponds to Þve texts, the sorted id of images ranges from
[1,1000], and the sorted id of texts ranges from [1, 5000].
For text retrieval samples, we select the image every one
hundreds images based on the sorted indices from 100. For
image retrieval samples, we select the text every Þve hundreds
texts based on the sorted indices from 501 to prevent overlap
between selected images and texts.

From these samples, we can Þnd that, under relatively
simple situation (i.e. the donut sample and the elephant sam-

ple), all these three methods are capable of retrieving right
images or texts. However, when the situation gets complex,
the VSRN [10] tends to ignore some key information, like the
ÒA trainer leadÓ in the Þrst image retrieval sample and the
Òhalf eat burgerÓ in the third image retrieval sample. On the
contrary, our MEMBER can not only handle both simple and
complex situation, but also can retrieve the matching images
or texts with a higher rank than IMRAM [4].

G. Visualization and Qualitative Analysis

As mentioned in Sec. III-C.2, when using a text (resp.,
image) to search the image (resp., text) memory bank, the
returned image (resp., text) features from the memory bank
do not strictly match this query text (resp., image) because we
have Þltered out its matched images (resp., texts) in the mem-
ory bank. So our goal of memory-based enhancement is to
extract useful cross-modal information from loosely matched
pairs. To validate this point, we visualize the input image
(resp., text) and the returned texts (resp., images) in Figure 6.
We utilize the attention weight from the cross-learning stage
to generate the cross-modal local correspondence in Figure 6.
By taking image-to-text retrieval as an example, given an
image self-feature and a memory response value, we Þrst
use multi-head attention mechanism to calculateh attention
weights A j � j � [ 1, h] (see Equ. (1)). Then we average
these attention weights to get the Þnal attention weightĀ.
Finally, We select the local correspondence according to the
entries larger than 0.9 in̄A. Color correspondence in Figure 6
indicates the local correspondence between regions in images
and words in texts. From these examples, we Þnd that most
of the returned images (resp., texts) have local correspondence
with the input text (resp., image). In the example ÒA man on
a bicycle riding next to a trainÓ, returned images have the
corresponding objects, ÒbicycleÓ, ÒmanÓ, and ÒtrainÓ, where
the related region and word are highlighted in the same color.
Since each of these returned images (resp., texts) can only
provide part of the local correspondences, it is important

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 30,2021 at 07:55:17 UTC from IEEE Xplore.  Restrictions apply. 



9206 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

to aggregate top-5 returned images (resp., texts) from the
memory bank.

V. CONCLUSION

In this paper, we have studied image-text retrieval from
a new viewpoint,i.e., enhancing embedding via Þne-grained
alignment and fusion. We have proposed a novel method
for memory-based mutual embedding enhancement, with the
retrieval performed in both self-embedding space and cross-
embedding space. Besides, our method maintains a relatively
fast speed. Comprehensive experiments on two benchmark
datasets have demonstrated that our method remarkably out-
performs the state-of-the-art approaches.
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