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Memorize, Associate and Match: Embedding
Enhancement via Fine-Grained Alignment
for Image-Text Retrieval

Jiangtong Li™, Liu Liu, Li Niu

Abstract—Image-text retrieval aims to capture the seman-
tic correlation between images and texts. Existing image-text
retrieval methods can be roughly categorized into embedding
learning paradigm and pair-wise learning paradigm. The for-
mer paradigm fails to capture the fine-grained correspon-
dence between images and texts. The latter paradigm achieves
fine-grained alignment between regions and words, but the high
cost of pair-wise computation leads to slow retrieval speed.
In this paper, we propose a novel method named MEMBER by
using Memory-based EMBedding Enhancement for image-text
Retrieval (MEMBER), which introduces global memory banks to
enable fine-grained alignment and fusion in embedding learning
paradigm. Specifically, we enrich image (resp, text) features with
relevant text (resp, image) features stored in the text (resp,
image) memory bank. In this way, our model not only accom-
plishes mutual embedding enhancement across two modalities,
but also maintains the retrieval efficiency. Extensive experiments
demonstrate that our MEMBER remarkably outperforms state-
of-the-art approaches on two large-scale benchmark datasets.

Index Terms—Image-text retrieval, memory network, attention
mechanism, transformer.

I. INTRODUCTION

ECENTLY, with the rapid growth of multimedia data on

the internet, vision and natural language have become
the main aspects for artificial intelligence to recognize our
world. To bridge the gap between these two modalities, cross-
modal modeling, including image-text retrieval [1]-[4], image
captioning [5], visual question answering [6], and visual
commonsense reasoning [7], has drawn more attention from
both academia and industry. Image-text retrieval is one of the
fundamental tasks, aiming to capture correspondence between
images and texts. Researchers have proposed lots of works and
made great progress in this task. Existing works can be roughly
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Fig. 1. TIllustrative Figure of (a) embedding learning paradigm, (b) pair-wise
learning paradigm and (c) our method.

categorized into two groups: embedding learning methods and
pair-wise learning methods.

As a straightforward solution, early works attempted to
directly map images and texts from different modalities to
a shared embedding space by enforcing constraints such as
triplet ranking loss [2] or correlation maximization [8], which
belong to embedding learning paradigm and are illustrated in
Figure 1 (a). This type of works learned global representations
within each modality and used different techniques like atten-
tion mechanism [9] or graph convolution networks [10] to filter
out irrelevant information, and then calculated the similarity
matrix through euclidean distance or cosine distance. However,
such methods can only capture coarse correspondence between
images and texts. Therefore, they work well in simple retrieval
scenarios, but are not suitable in more realistic cases that
involve multiple objects.

To learn fine-grained correspondence, recent research works
further explored to perform fine-grained alignment between
regions and words, which belong to pair-wise learning par-
adigm and are illustrated in Figure 1 (b). Lee et al. [3]
built object-level correspondence and adopted stacked cross
attention to align regions and words. To further enhance the
cross-modal interaction, Chen et al. [4] proposed IMRAM to
iteratively match each image-text pair with recurrent attention
mechanism. Chen and Luo [11] proposed to aggregate the
affinity between regions and words in each image-text pair.
These methods are capable of capturing region-word alignment
between images and texts by a complex fine-grained alignment
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scorer, and have achieved state-of-the-art performance on
several benchmark datasets. Unfortunately, the retrieval speed
of these methods has been slowed down largely. One of the
reasons is that the fine-grained alignment requires calculating
all the matching relations between every region and every word
in each image-text pair. Besides, the number of all image-text
pairs is huge, which makes this process quite time-consuming.

Comparing the embedding learning paradigm and the
pair-wise learning paradigm, we conclude that the fine-grained
alignment across modalities is essential for the performance
of image-text retrieval, however, inefficient pair-wise scor-
ing in pair-wise learning paradigm leads to slow retrieval
speed. Besides, scoring the images and texts in a shared
embedding space is the key to accelerate retrieval speed,
whereas the coarse correspondence captured by embedding
learning methods limits its application to complex sce-
narios with multiply objects. To combine the advantages
from both learning paradigms, we attempt to enhance the
embedding represenation via fine-grained alignment. For this
purpose, as illustrated in Figure 1 (c), we propose Memory-
based EMBedding Enhancement for image-text Retrieval
(MEMBER) method, which integrates key-value memory
banks to help our model perform fine-grained alignment
and fusion in the embedding learning paradigm. Unlike pre-
vious embedding learning methods, our model learns two
types of embeddings: self-embedding and cross-embedding,
where self-embedding is generated within each modality
and cross-embedding is generated by interacting with the
cross-modal memory bank.

Corresponding to two types of embeddings, our proposed
MEMBER method has two stages: self-learning stage and
memory-based cross-learning stage, as illustrated in Figure 2.
In self-learning stage, we first extract region (resp., token)
features from each image (resp., text), and then adopt a
siamese transformer to encode region and token features into
corresponding self-features. After that, they are compacted to
self-embeddings to facilitate retrieval. We design a key-value
image (resp., text) memory bank, where each key-value pair is
self-embedding and self-features for images (resp., texts) in the
whole training set. Then, we associate each image (resp., text)
with relevant cross-modal information in the memory bank to
enhance the image (resp., text) embedding. Specifically, given
an image (resp., a text), we use its compact self-embedding
to search the text (resp., image) memory bank for relevant
text (resp., image) self-features. Then, we perform fine-grained
alignment and fusion between its self-features with the relevant
cross-modal self-features. Finally, we perform retrieval in both
self-embedding space and cross-embedding space. Although
fine-grained alignment and fusion is required in this stage,
it is only performed between each image (resp., text) and a
few relevant texts (resp.,, images), which is different from and
faster than pair-wise learning methods. (see Sec.IV-E)

Our cross-learning stage is inspired by cognitive sci-
ence [12]. When seeing a new sentence, people may first focus
on a related topic or experience in the memory, associate with
some related scene fragments from the topic or experience,
link some noun/verb groups with these scene fragments,
and understand this sentence better by combining all the
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information together. This process coincides with the “mem-
orize and associate” behavior of our model, that is, utilizing
the key-value memory banks to recall relevant fine-grained
features and adopting the fine-grained alignment and fusion
for embedding enhancement. Note that some works [13],
[14] also adopted memory bank to help image-text retrieval.
Song et al. [13] applied category-based memory in image-text
retrieval, where the category information is unavailable in
our situation. Ji ef al. [14] only used several memory slots to
restore and forget the batch information, which only utilized
the representation of previous few batches and the memory
slots lack explicit meanings. In contrast, our memory banks
hold global memory with explicit meanings, i.e., pairs of com-
pact self-embedding and self-features. Besides, the function of
our memory banks is to help images (resp., texts) extract useful
cross-modal information from relevant texts (resp., images),
which is also different from previous works [13], [14].

The effectiveness of our proposed MEMBER method is ver-
ified by comprehensive experimental results on two benchmark
datasets. Our main contributions are summarized as follows:

o To combine the advantages of embedding learning and
pair-wise learning paradigms, we integrate fine-grained
alignment into embedding learning paradigm.

o« We propose a novel MEMBER method, which utilizes
global memory to accomplish fine-grained alignment and
fusion for mutual embedding enhancement.

o Comprehensive experiments on two large-scale bench-
mark datasets reveal that our method significantly out-
performs the state-of-the-art methods.

II. RELATED WORK
A. Image-Text Retrieval

The key issue of image-text retrieval is to measure the
semantic similarity between a text and an image. For this
purpose, existing works can be categorized into two groups,
embedding learning methods [2], [15], [16] and pair-wise
learning methods, [11], [17]-[19].

The embedding learning methods aim to learn a
modal-invariant and representative embedding for each image
and text. Rasiwasia et al. [8] proposed Canonical Correlation
Analysis (CCA) to optimize the statistical values to learn
linear projection matrices, which motivates many follow-up
works [20]-[22] to learn more accurate projection matrices
for better correlation performance. Kiros et al. [23] adopted
the hinge-based triplet loss to learn the image and text
embeddings in a shared space. Faghri ef al. [2] paid atten-
tion to the hardest negative with the triplet ranking loss.
He et al. [16] combined classification loss, clustering loss and
ranking loss together, along with a new proposed benchmark,
which performed retrieval among three different modalities.
Wu et al. [15] applied self-attention layers to discover the
relationships among regions (resp., words) in images (resp.,
texts). Li er al. [10] performed reasoning with Graph Con-
volutional Networks [24] to generate features with semantic
relationships.

The pair-wise learning methods aim to calculate the simi-
larity between each image-text pair more accurately with fine-
grained alignment. Karpathy er al. [1] extracted objects from
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images, and matched them with words in texts to explore the
fine-grained image-text correspondence. Huang et al. [25] pro-
posed a cross-modal attention to selectively attend to several
pairs of instances of images and texts, by predicting pair-
wise instance-aware saliency maps. Wu et al. [26] proposed
an online learning method to learn the similarity function
across modalities. Peng et al. [27] paid much attention on
unsupervised image-text retrieval, which combined the image-
to-text translation and fine-grained alignment together to cap-
ture the image-text correspondence under unsupervised man-
ner. He and Peng [28] proposed a fine-grained visual-textual
representation method, where the text attention was used to
discover discriminative visual-textual pairwise information for
boosting categorization performance and the intra-modality
and inter-modality information was also preserved to gen-
erate complementary fine-grained representation To capture
structure information in images and texts, Wang et al. [17]
designed two particular scene graph encoders and explored
the graph matching from both object-level and relationship-
level. Liu et al. [29] utilized extra information (i.e., the text
semantic parsing labels) to parse images and texts into graphs,
and adopted the graph structured network to match them.

Cross attention is also widely used in pair-wise learning
methods to boost the fine-grained alignment between images
and texts. Peng et al. [30] proposed recurrent cross-attention
network to capture modality-specific cross-modal similarity.
Huang et al. [31] designed bi-directional cross-attention net-
work to explore the spatial-semantic relation for image-text
retrieval. Lee et al. [3] obtained the image (resp., text) fea-
tures by attending each region (resp., word) feature to all
word (resp., region) features. To utilize multi-level visual-
textual alignment, Peng ef al. [32] proposed MAVA to incor-
porate local-level, global-level, and relation-level information
together. Besides, with the help of the cross attention networks,
Chen et al. [4] proposed IMRAM to match fragments across
different modalities iteratively. DP-RNN [11] utilized the
similarity scores to enhance the final features. Note that, these
models can capture the image-text correspondences well by
fine-grained alignment, but their retrieval speed will be very
slow when the retrieval space is large, which makes them
unsuitable for real-world application. Unlike these models, our
method provides a new perspective: fine-grained alignment
and fusion for mutual embedding enhancement, which can
maintain relatively fast retrieval speed.

B. Memory-Enhanced Network

Memory-enhanced network was first proposed by
Weston et al. [33] to enhance the network’s long-term
memory capability by augmenting it with a series of extra
memory components, where the memory components can be
read and written to store input facts and to retrieve supporting
facts given an input query. Sukhbaatar ef al. [34] extended
the idea and developed the first end-to-end memory network
(MemN2N) with a recurrent attention model over a large
external memory. Graves et al. [35] proposed Neural Turing
Machine, which adopted a key-value structure to tackle the
problem of sorting and recalling during memory writing and
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memory reading. A similar key-value memory mechanism
was also adopted by Miller et al. [36] to utilize different
encoding schemes for memory reading. To get a soft-selection
over memory slots, Kim et al. [37] proposed a new structured
attention network, which used a conditional random field to
capture structural dependencies in memory slots.

Memory-enhanced networks have become popular in the
fields of computer vision [38] and natural language process-
ing [39], [40]. For example, Zhu et al. [41] proposed Iter-
ative Querying Model (IQM) to encode human knowledge
into an extra memory bank for more accurate reasoning.
Park et al. [38] adopted Long-short Term Memory (LSTM)
to capture the personalized feature during sequence modeling.
Wang et al. [39] proposed to enhance the RNN decoder in
neural machine translator with a pre-defined external mem-
ory, which aimed to capture relevant information during the
sequence decoding. And Cheng et al. [40] extended the neural
machine reader with an external memory network to store
contextual information of input document.

Memory-enhanced network is also widely used in multi-
modal modeling. For example, the stacked attention networks
(SANs) [42] regarded the whole image as a memory bank
and then used the text semantic representation to search for
all the regions in a given image to infer the corresponding
answers. Song et al. [13] proposed a category-based modal-
shared memory bank for cross-modal retrieval. Ji et al. [14]
restored the inter-modal and intra-modal information in the
memory bank to narrow the modality gap between images and
texts. Note that the memory banks used in these works either
only captured category information or utilized local informa-
tion. In contrast, our work not only utilizes global memory
with explicit meanings, but also facilitates fine-grained align-
ment and fusion between two modalities.

III. METHODOLOGY

In this section, we will introduce our MEMBER method,
which is short for Memory-based EMBedding Enhancement
for image-text Retrieval. In Sec. III-A, we will present the
problem definition and notation. In Sec. III-B, we will intro-
duce the background knowledge of transformer, which is
used multiple times in our model. In Sec. III-C, we will
detail our MEMBER method, revealing how to utilize global
cross-modal information efficiently.

A. Problem Definition

Suppose we have a set of training images {xl.l, ey vai} and
a set of training texts {X,l, e x,N’ } with provided matching
correspondence (each image has several matched texts), where
N; and N; are the number of images and texts, respectively.
Our method builds global memory banks based on the train-
ing images and texts, and learns self-embeddings and cross-
embeddings of images/texts. In the test stage, given images
and texts, we can obtain their self-embeddings and cross-
embeddings, based on which the similarity of each image-text
pair is calculated to perform retrieval. For clarity, in the
rest part of this paper, we will omit the index number of
images/texts, and all the similarity is measured under cosine

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 30,2021 at 07:55:17 UTC from IEEE Xplore. Restrictions apply.



9196

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Self-Learning Memory-Enhanced Cross-Learning " Transformer Decoder Layer ™,

I [ : /—T—\ :

Image Image Image Image Decoder E Add & Norm .

v Self-Features Self-Embedding Cross-Features Cross-Embedding ! A H

Bottom-up — . '
Attention Text i : ced Forwar

v — — R j >
Bank : 1

l E T E E Multi-Head H
i
Region Features L,; Ly, ' _Feed Forward o Attention '
. i .
Token Features T : T E . L ‘
-
[CLS], "a', 'small', child, : : i :
'smiles', 'as', 'a', 'ball', 'flies’, — [ ' —>|Add & Norm e Gdd & Norm H
rowards’, his', face’, [SEP] E— 5 T E— : o ]
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Fig. 2. The flowchart of our MEMBER method. We first adopt BERT [43] and Faster R-CNN [44] (bottom-up attention [45]) to extract token (resp., region)
features from texts (resp., images), based on which we perform self-learning to obtain the self-embeddings. Then, memory-enhanced cross-learning is followed
to obtain the improved cross-embeddings. The structures of transformer encoder and decoder layers are shown on the right.

similarity. We use X” to denote the transpose of X and 1 to
denote an all-one column vector.

The overall structure of our proposed MEMBER method
is illustrated in Figure 2. We first represent each image as a
sequence of region features I¢ and each text as a sequence
of token features T¢. Through a self-transformer encoder E*,
we can obtain the image self-features I’ and text self-features
T¢. Then, a pooling layer is adopted to compact I* (resp.,
T¥) into an image (resp., a text) self-embedding i° (resp., t*),
which is used to perform retrieval in self-embedding space and
memory search. We set up an image (resp., a text) memory
bank which stores the image (resp., text) self-embeddings and
their corresponding self-features of all training images (resp.,
texts). Although all training texts and images are stored in the
memory bank by default, actually, only using around 12,000
texts and 2,400 images can achieve comparable results (see
Sec. IV-D). By using text (resp., image) memory bank and
cross-transformer encoder E¢, we can obtain enhanced image
(resp., text) cross-features I¢ (resp., T¢). Another pooling layer
is adopted to compact I¢ (resp., T¢) into an image (resp.,
a text) cross-embedding i (resp., t°). Finally, we perform
retrieval in both self-embedding and cross-embedding spaces.

B. Background on Transformer

We use transformer encoder and decoder [46] to encode and
decode sequences of features in our method, which are widely
used and have achieved great success in many areas, such
as language modelling [43] and cross-modal retrieval [15].
Given two sequences of features, the transformer encoder can
align these two sequences and accomplish information fusion.
A transformer encoder (resp., decoder) contains multiple trans-
former encoder (resp., decoder) layers, with the structure of
each layer shown in Figure 2.

Each transformer encoder layer is constructed by a
multi-head attention sub-layer and a feed-forward sub-layer.
The multi-head attention sub-layer takes queries Q, keys K,
and values V as input. Q € R™ xd K e Rmu*d and

V € R >4 gre all sequences of features, where d is the feature
dimension, ny, ng, and n, are the length of queries, keys, and
values, respectively. In practice, K is usually identical with
V, i.e., K = V. According to whether Q is identical with V,
we can divide transformer encoder layer into self-transformer
encoder layer (Q = V) and cross-transformer encoder layer
(Q # V). For each query in Q, the attention sub-layer
calculates its similarities with all keys in K, and obtains
the weighted average of corresponding values in V as the
attended value. Besides, transformer encoder layer employs the
multi-head attention mechanism, which calculates the attended
values based on multiple projections. Specifically, Q, K, and
V are projected to lower dimension /4 times respectively using
h projection matrices. Then £ attention weight A; Vj € [1, h]
is calculated to produce the attended values H; Vj € [1, h]:

QW) (KW )T)

~

A; = Softmax(

>

Hj = A; VWY, (D)

in which W].Q, Wf s W)/ eRY xd are projection matrices with
d= %. Then, & attended values can be obtained by

MH(Q,K,V) = [H;, ..., H,JWC, )

where WO e RMxd jg 4 projection matrix, [Hy, ..., Hy]
means concatenation, and M H (-, -, -) is short for Multi-Head.

Then a feed-forward sub-layer is applied on the top of
the multi-head attention sub-layer, which consists of two
linear transformations with a ReLU activation between them.
For different positions, they use the same linear transforma-
tions, while the parameters from layer to layer are different.
Moreover, residual connections are employed around both
multi-head attention sub-layer and feed-forward sub-layer, fol-
lowed by layer normalization [47]. Based on M H(Q, K, V),
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the entire transformer encoder layer can be formulated as

X = LNQ+MH(Q,K,V)), 3)
FFN(X) = max(0, XW; + 1b] )W, +1b], (4)
TFE(Q,K,V) = LN(X + FFN(X)), )

where X € R%*d W, € R4 W, e R, b e RIXI,
b, € R?! LN() is short for Layer Normalization. And
TFE(-,-,-) represents a TransFormer Encoder layer, with
the output size being n,; x d, completing information fusion
between Q and V. Intuitively, for self-transformer encoder
layer, we represent query Q by itself; for the cross-transformer
encoder layer, we represent query Q by a different value V.
Transformer encoder is formed by stacking multiple trans-
former encoder layers T FE(-,-,-), in which the output of
previous layer is replicated as the input queries, keys, and
values for next layer. We use transformer encoder in both self-
learning (Sec. III-C.1) and cross-learning stage (Sec. III-C.2).
The transformer decoder shares a similar structure as the
transformer encoder, except an extra multi-head attention sub-
layer with side input V shown in Figure 2. We use transformer
decoder to generate texts from image features (Sec. III-C.3).
For more details of transformer, refer to Vaswani et al. [46].

C. Our Method

In this section, we will introduce our self-learning stage
in Sec. III-C.1 and memory-enhanced cross-learning stage
in Sec. III-C.2. Then, we will describe our loss function in
Sec. III-C.3 and discuss our retrieval strategy in Sec. III-C.4

1) Self-Learning Stage: Given an image X; and a text X; as
a pair of inputs, we use different feature extractors to represent
each of them as a sequence of feature vectors.

a) Region features extraction: To capture the fine-grained
region information in each image, we employ bottom-up
attention [45] to extract convolutional feature for each image
region. Specifically, we follow Lee et al. [3] and use the Faster
R-CNN model [44] to extract the region features. Therefore,
an image is represented as a sequence of image region features
I¢ € Rtixdi = [if,..., iy, ] ordered by confidence score, where
n; is the number of regions and d; is region feature dimension.

b) Token features extraction: Motivated by the improve-
ment achieved in the natural language processing, we apply
the transformer encoder to extract word features of each
text, which are rich in semantics. In particular, a pre-trained
BERT [43] is employed to generate context-sensitive token
features. Through this model, we can represent each text as a
sequence of features T¢ € R™ xdi — [tS, ..., t;, 1, where n; is
the number of tokens and d; is token feature dimension.

c) Self encoding: To encourage the information sharing
among regions (resp., words) within each sequence of image
region (resp., text token) features, we apply a self-transformer
encoder introduced in Sec. III-B to learn better image (resp.,
text) features. First, we project region features and token
features into the same dimension d, which is formulated as

I =T°W; +1b7, T¢ = T°W, + 1b], (6)

where W; € R%>xd b, ¢ RIX1 W, ¢ R4>d p, ¢ RIXI,
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Then, we employ a self-transformer encoder E*, where the
input query, key, and value are all I¢ (resp., T¢), and obtain
the image (resp., text) self-features I* (resp., T°):

I=£e0419,1%, T =E(T?, T, TY. (7

In detail, given the projected region features I¢ (resp.,
projected token features Td), for each item in I¢ (resp.,
T?), we calculate its attention weights with all the items
in 14 (resp., T9), and obtain the attended values (see Equ.
(1) and (2)). Then, we fuse the attended values with I¢
(resp., T?) to enhance itself (see Equ. (3), (4), and (5)).
In this way, E° encourages information propagation among
region (resp., token) features within each image (resp., text)
to learn better image (resp., text) self-features I° (resp.,
T*) [46]. Regularly, we employ different transformer encoders
for images and texts separately. To save parameters, motivated
by Chopra et al. [48], we utilize a siamese self-transformer
encoder, where images and texts features share a same trans-
former encoder.

To obtain compact representation, a pooling layer is
employed to compact image (resp., text) self-features into an
image (resp., text) self-embedding i® (resp., t*). We design
three strategies for this pooling layer:

o first: select the first vector in image (resp., text) self-

features as the self-embedding [43].

o mean: average all vectors in image (resp., text) self-

features as the image (resp., text) self-embedding.

o max: aggregate the image (resp., text) self-features by

choosing the max value in each dimension as the image
(resp., text) self-embedding.

We employ triplet loss to pull close the self-embeddings of
matched images and texts (see Sec. III-C.3), so that self-
embeddings can be used for memory search in Sec. III-C.2
and the final retrieval.

2) Memory-Enhanced Cross-Learning Stage: Given image
(resp., text) self-embeddings and self-features, we attempt to
enhance them with cross-modal information. For this purpose,
we construct an image (resp., text) memory bank to store
the global information of all training images (resp., texts).
In the following, we will take the text memory bank as an
example. For the j-th slot in text memory bank, the key k!
is the text self-embedding of the j-th training text and the
value V/ is the corresponding text self-features. Given an input
image, we intend to learn its cross-embedding enhanced by
relevant fine-grained text information in the text memory bank.
In particular, we first search relevant texts in the text memory
bank, and then use the self-features of relevant texts to enrich
the self-features of this image via fine-grained alignment and
fusion.

a) Memory update: The text self-embeddings and self-
features are consistently learned during training. In order to
update the memory bank in time and avoid re-calculating self-
embeddings/features, we choose to continuously replace the
key-value pairs in the memory bank with the self-embeddings
and self-features after each training step.

b) Memory query and response: Given image self-
embedding i’ of input image x;, we first calculate the cosine
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similarity between i’ and each key k! in this memory bank,
i5~k'/

bl 1
most relevant texts (the key—tvalue pairs) in the memory bank

as the memory responses {(k;', V;')|”*;}. Note that in the test
stage, a test image does not have matched texts in the text
memory bank. To enhance the generalization ability to test
set, we filter out the matching pairs before getting the top n,,
memory responses during training. After that, each memory
response weight is calculated by

where cos(if ,k,j ) = Then we select the top n,,

exp(cos(i’, k}))
™ exp(cos(is, k')’

Note that although we use global memory, the query and
response are based on self-embeddings, which makes this step
very efficient even for potentially large training set. We also try
storing partial training set in memory banks, which our method
is still effective with small memory bank (see Sec. IV-D).

c) Cross encoding: Now for input image x;, we have
its image self-features I*, memory response values T =
{V,”,...,V,r"”‘}, and associated memory response weights
{al', ..., a, }. We design two fusion strategies, i.e., early-
fusion and late-fusion, to fuse the information of image
self-features and text memory responses. The difference lies
in whether we perform cross-modal information fusion before
or after weighted average. For early-fusion strategy, we first
calculate the weighted average of memory response values T/
based on a™. Then we obtain image cross-features by

®)

Nm

Viwal, E=E@TNTY, )

where E€ is a cross-transformer encoder. As explained in
Sec. III-B, E¢ performs fine-grained alignment and fusion
between I* and T", producing enhanced features I°.
Considering that V,rj in Equ. (9) have different length
and simply averaging the memory response values may be
ineffective, we introduce the late-fusion strategy. Particularly,
we fuse each response value with the image self-features
through the cross-transformer encoder, and then calculate the
weighted average of outputs as the image cross-features I¢:

nm

K =E@®,V/ V), I'= Ixa’ (10)

J
j=1

As mentioned before, to enhance the image feature with
the text memory responses, in both Equ. (9) and (10), we use
the image self-feature (I*) as the query and use the weighted
text response (T") or original response value (V;‘j ) as the key
and value. At length, for each item in I°, we first calculate
the attention weight with all the items in T” or V;’, and
obtain the attended values (see Equ. (1) and (2)). Then,
we fuse the cross-modal attended values with I’ to enhance
the image self-feature with cross-modal fine-grained alignment
and fusion (see Equ. (3), (4), and (5)).

Finally, the same pooling layer in Sec. II-C.1 is
employed to compact the image cross-features I¢ into an
image cross-embedding i°. Note that we use transformer
encoder in cross-learning stage for fine-grained alignment and
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fusion between image self-features IS and memory response
values T7".

Analogous to text memory bank, we also have an image
memory bank. Given an input text X;, we can obtain its cross-
features T¢ and cross-embedding t° via memory-based cross-
modal enhancement in a similar way.

3) Loss Function: To enforce the distance of matched
image-text pairs closer than unmatched ones, we use triplet
ranking loss [4], [10] in both self-embedding space and
cross-embedding space. Following Faghri et al. [2], we put
emphasis on the hardest negatives, i.e., the negatives closest to
each training query. For a positive pair (i, t), a hardest negative
image embedding i, and a hardest negative text embedding t,
we define the triplet loss as

Leri (i t) = [ — SG, )+ SG, §)]4++18 — SG ) +SG, )]+,
(11)

where £ serves as a margin parameter and [x] = max(x, 0).
We adopt the cosine similarity as S(-, -). For computational
efficiency, rather than selecting the hardest negatives in the
entire training set, we use the hardest one in each mini-batch.
In addition, the learned image self-features and cross-
features (I’ and I¢) of an input image are supposed to
have the ability to generate its matched text. Following
Vaswani et al. [46], we use the transformer decoder (see
Figure 2) to generate text from image features, where the input
queries, keys, and values are all masked original token features
T =[tf, ..., tfll], and the side input V is image self/cross-
features. We introduce a generation loss by maximizing the

log-likelihood of predicting matched text:
ny
Lee(X, T =—  logp(tflt],....t{_;.L6&), (12)

k=1

where 6 is the parameters of transformer decoder and
I indicates image self/ross-features. We substitute self/cross-
embeddings into Equ. (11), and substitute self/cross-features

and token features into Equ. (12), leading to final loss function:

L=Lui(, ) +Lge(@, TO)+ Lyi (% t9) + Lo (1%, T).
13)

4) Retrieval: We propose two strategies to integrate both
self-embedding and cross-embedding space: embedding com-
bination and similarity combination. The former strategy first
adds self-embeddings and cross-embeddings to get combined-
embeddings, and then calculates the similarities using the
combined-embeddings. The latter strategy first calculates the
similarities based on self-embeddings and cross-embeddings
separately, and then averages two types of similarities.

1V. EXPERIMENT
A. Experiment Setup

1) Dataset: We evaluate our MEMBER method and all
the other baselines on two large-scale benchmark image-text
retrieval datasets: Microsoft COCO [50] and Flickr30K [51].

Microsoft COCO [50]: originally consists of 82,783 training
images and 40,504 validation images, and each image is
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TABLE I

COMPARISON WITH EXISTING MODELS ON FLICKR30K. SELF, CROSS, AND COMB REPRESENT THE RETRIEVAL PERFORMANCE ON
SELF-EMBEDDING SPACE, CROSS-EMBEDDING SPACE, AND THE COMBINATION OF THESE TWO SPACES

Learning Text Retrieval Image Retrieval

Paradigm Method R@T R@5 R@I0 | R@l R@5 R@io | Rosum

SCAN [3] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

CAMP [49] 68.1 89.7 95.2 51.5 717.1 85.3 466.9

Pair-wise PFAN [19] 70.0 91.8 95.0 50.4 78.7 86.1 472.0

Learning DP-RNN [11] 70.2 91.6 95.8 55.5 81.3 88.3 482.7

MAVA [32] 71.5 91.6 95.9 524 79.6 86.6 4717.6

IMRAM-full [4] 74.1 93.0 96.6 53.9 79.4 87.2 484.2

M3A-Net [14] 58.1 82.8 90.1 44.7 72.4 81.1 429.2

VSRN [10] 71.3 90.6 96.0 54.7 81.8 88.2 482.6

Embedding SAEM [15] 69.1 91.0 95.1 524 81.1 88.1 476.8

Learning MEMBER (Self) 72.1 91.8 96.2 57.1 82.1 90.1 489.4

MEMBER (Cross) 75.3 93.1 97.4 58.1 83.8 90.4 498.1

MEMBER (Comb) 77.5 94.7 97.3 59.5 84.8 91.0 504.8

MEMBER (Comb) w/o BERT 76.1 93.9 96.7 57.5 83.3 89.9 497.4

annotated with five text descriptions. Following the split in
Lee et al. [3], we select 5,000 validation images and 5,000
test images from the original validation set and then add the
rest 30,504 images from the validation set into the training
set. The testing results are reported for both averaging over 5
folds of 1K test images and directly testing on the full 5K test
images as Li et al. [10] and Chen et al. [4].

Flickr30K [51]: consists of 31,000 images collected from
the Flickr website. Each image corresponds to five human
annotated texts. We follow the split in Lee et al. [3], by using
1,000 images for validation, 1,000 images for testing, and
29,000 images for training.

2) Evaluation Metrics: To compare our proposed method
with state-of-the-art methods, we adopt the same evalua-
tion metrics on both datasets as Chen et al. [4]. Specifically,
we adopt Recall at K (R@K) to measure the performance
of bi-directional retrieval tasks, i.e., retrieving texts given an
image (Text Retrieval) and retrieving images given a text
(Image Retrieval). We report R@1, R@5, and R@10 on both
datasets. To further demonstrate the effectiveness of our pro-
posed method, we also report an extra metric “R@sum”, which
is the summation of all evaluation metrics as Chen et al. [4].

3) Implementation Details: We implement our method
using PyTorch [52], which is trained on one GTX 1080 Ti
GPU. We use Adam [53] optimizer with f; 0.5 and
F2 = 0.999 to train the model for 30 epochs. For the learning
rate, we start with learning rate 0.0002 and decay the learning
rate by 0.1 after every 10 epochs. We use a mini-batch size
of 128.

On both datasets, for token feature extraction, we follow
Wu et al. [15] and use the pre-trained weights of BERT
model [43] which has 12 transformer layers, 12 heads, 768
hidden units for each token, and 110M parameters in total;
for region feature extraction, we follow Chen ef al. [4] and
use the Faster R-CNN model [44] with ResNet-101 [54]
pre-trained by Anderson et al. [45] on Visual Genomes [55].
For transformer encoder and transformer decoder, the hid-
den dimension d and number of heads & are set to 512
and 4, respectively. We stack two transformer encoder

(resp., decoder) layers for our transformer encoders (resp.,
decoder). Memory banks are updated during training and the
memory response size n, for both memory banks is set
as 5. The pooling strategy for both self-learning and cross-
learning stages is set as “max”. We choose the late-fusion (see
Sec. III-C.2) and similarity combination (see Sec. III-C.4) as
fusion strategy and retrieval strategy. For loss function, the
margin f is set as 0.05.

B. Comparison With Existing Methods

In this section, we compare our method with eight prior
methods, which include three embedding learning models
and five pair-wise learning models. For embedding learning
models, we compare with M3A-Net [14], VSRN [10], and
SAEM [15], where M3A-Net adopted a local memory bank
to enhance the embedding and SAEM adopted pre-trained
BERT to extract token representation. For pair-wise learning
models, we compare with SCAN [3], CAMP [49], PFAN [19],
DP-RNN [11], MAVA [32], and IMRAM [4], all of which
use attention mechanism to enhance the pair-wise matching.
Except for M3A-Net [14], all the other methods applied Faster-
RCNN [44] to extract image region features. The state-of-the-
art results for both learning paradigms are highlighted in bold.

The performance on Flickr30K dataset is shown in Table I,
where our proposed MEMBER method outperforms all the
existing methods on all evaluation metrics by a large mar-
gin. Compared with the state-of-the-art embedding learning
method VSRN [10], the performance gains of our method
are 6.2% on text retrieval (R@1), 4.8% on image retrieval
(R@1), and 22.2% on R@sum. Besides, our method can
also outperform the state-of-the-art pair-wise learning model
IMRAM-full [4] by 3.4% on text retrieval (R@1), 5.6% on
image retrieval (R@1), and 20.6% on R@sum.

To further reveal the effect of pre-trained BERT features,
we conduct extra experiment without using the pre-trained
BERT feature for text representation and the experiment results
are shown in the Table I and Table II. Based on the experiment
results, without the pre-trained BERT feature, our method
still outperform all the methods in both embedding learning
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TABLE II

COMPARISON WITH EXISTING METHODS ON MICROSOFT COCO. SELF, CROSS, AND COMB REPRESENT THE RETRIEVAL PERFORMANCE IN
SELF-EMBEDDING SPACE, CROSS-EMBEDDING SPACE, AND THE COMBINATION OF THESE TWO SPACES

Learning Text Retrieval Image Retrieval
Paradigm Method R@I R@5 R@I0 | R@l R@5 R@io | ROsum
1K

SCAN [3] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

CAMP [49] 723 94.8 98.3 58.5 87.6 95.0 506.5

Pair-wise PFAN [19] 76.5 96.3 99.0 61.6 89.6 95.2 518.2

Learning DP-RNN [11] 753 95.8 98.6 62.5 89.7 95.1 517.0

MAVA [32] 76.4 96.3 98.5 60.7 89.0 95.0 5159

IMRAM-full [4] 76.7 95.6 98.5 61.7 89.1 95.0 516.6

M3A-Net [14] 70.4 91.7 96.8 58.4 87.1 94.0 498.4

VSRN [10] 76.2 94.8 98.2 62.8 89.7 95.1 516.8

Embedding SAEM [15] 71.2 94.1 97.7 57.8 88.6 94.9 504.3

Learning MEMBER (Self) 752 96.1 97.8 60.7 89.2 94.8 513.8

MEMBER (Cross) 76.6 95.4 98.0 63.0 90.6 95.8 5194

MEMBER (Comb) 78.5 96.8 98.5 63.7 90.7 95.6 523.8

MEMBER (Comb) w/o BERT 77.8 96.3 97.9 62.7 89.9 95.1 519.7

5K

SCAN [3] 50.4 82.2 90.0 38.6 69.3 80.4 410.9

Pair-wise CAMP [49] 50.1 82.1 89.7 39.0 68.9 80.2 410.0

Learning MAVA [32] 50.7 82.4 90.7 40.2 70.0 80.6 414.6

IMRAM-full [4] 53.7 83.2 91.0 39.7 69.1 79.8 416.5

M3A-Net [14] 48.9 75.2 84.4 38.3 65.7 76.9 389.4

Embedding VSRN [10] 53.0 81.1 89.4 40.5 70.6 81.1 415.7

Learning MEMBER (Self) 53.0 81.7 90.2 39.1 69.7 80.6 4143

MEMBER (Cross) 53.6 81.8 90.3 39.8 70.4 81.3 417.2

MEMBER (Comb) 54.5 82.3 90.1 40.9 71.0 81.8 420.6

MEMBER (Comb) w/o BERT 54.0 81.7 89.6 40.2 70.5 81.1 417.1

paradigm and pair-wise learning paradigm in terms of both
R@]1. Besides, we can find that the pre-trained BERT features
have larger impact on the Flickr30K, since the data size of the
Flickr30K are much less than the Microsoft COCO dataset.
Furthermore, we also find that the impact of the pre-trained
BERT feature is not quite large (about 1.0-2.0 % in Flickr30K
and 0.5-1.0 % in Microsoft COCO), which mainly due to the
following three reasons, 1) we integrate the global memory
bank and the cross-model information to enhance the embed-
ding representation, which make the information across the
whole dataset well shared; 2) we follow the structure of BERT
and also utilize the transformer structure in both self-learning
stage and cross-learning stage, which make the information
can be shared between both modalities; 3) the BERT is training
in only text modality, therefore, the pre-trained BERT feature
may not fit in cross-model situation.

The performance on Microsoft COCO dataset is shown
in Table II. In both 1K and 5K setting, our method can
outperform existing methods with a large gap on R@I.
Compared with the best baselines in both learning paradigms,
i.e. VSRN [10] and IMRAM-full [4] in 1K test set, our
method achieves an improvement of 2.3% and 1.8% on text
retrieval (R@1), and 0.9% and 2.0% on image retrieval (R@1),
respectively.

By comparing the improvement of our method on both
datasets, we find the improvement on Flickr30K is more
significant. We conjecture that images in Microsoft COCO
have fewer objects and simpler relations, which compromises
the enhancement from fine-grained alignment and fusion.

Besides, the performance of cross-embedding is always better
than that of self-embedding, which indicates the effect of our
memory-based cross-modal enhancement.

C. Ablation Study

By taking Flickr30K as an example, we perform a series
of experiments to verify the effect of different modules in
our model. In Sec. IV-C.1, we analyze the impact of different
loss terms. In Sec. IV-C.2, we experiment some alternative
choices on pooling strategy, fusion strategy, retrieval strategy,
and token features. In Sec. IV-C.3, we study the impact of
different memory response sizes. In Sec. IV-C.4, we study the
effect of different memory bank arrangements. In Sec. IV-C.5,
we study the effect of different fusion strategy arrangements.
In Sec. IV-C.6, we study the effect on different hyper-
parameters, including the hidden dimension d, the number of
heads %, and the margin f. The text retrieval R@1, image
retrieval R@1, and R@sum of MEMBER(Comb) are reported
in this section.

1) Effect of Loss Term: As shown in Table III, the impact
of L, is larger than that of Lg,, because the quality of
cross-embedding is more important for the retrieval perfor-
mance. Besides, when we remove all the losses (i.e., L¢,; and
L; ) used in cross-learning stage, we find that the performance
of our self-embedding also drops about 1% and 3% in text
and image retrieval respectively, because our model is trained
end-to-end and the gradient from cross-learning stage can also
boost the performance of self-embedding.
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TABLE III

THE ABLATION STUDY OF LOSS TERMS AND TOKEN EMBEDDINGS.
L;‘”., L;,e, AND Lz;e ARE SHORT FOR L (i t%), Lg.(I*, T¢), AND
Lge(I¢, T¢) IN EQU. (13). (Resp., x) MEANS ADDING (Resp.,
REMOVING) THIS LOSS TERM DURING TRAINING. T IS SHORT
FOR TEXT RETRIEVAL, AND I IS SHORT

FOR IMAGE RETRIEVAL
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TABLE V

THE EFFECT OF DIFFERENT MEMORY BANK ARRANGEMENTS. IMAGE
CE (Resp., TEXT CE) MEANS THE TYPE OF MEMORY BANKS USED
TO ENHANCE THE IMAGE(RESP., TEXT) CROSS-EMBEDDING. TEXT
BANK, IMAGE BANK, BOTH, AND / REPRESENT TEXT MEMORY
BANK, IMAGE MEMORY BANK, BOTH OF THESE TWO MEM-

ORY BANKS, AND NONE OF THESE MEMORY BANKS

;. L:. L. ReI(I) Re@I(l) R@sum
v X v 75.6 584 498.9
v v X 74.9 57.7 495.3
v X X 74.3 56.1 493.8
X v X 71.2 53.8 475.4

TABLE IV

THE ABLATION STUDY ON SOME ALTERNATIVE CHOICES OF “POOLING”,
“FUSION”, AND “RETRIEVAL”. FOR “TOKEN”, BERT MEANS WE USE
PRE-TRAINED BERT MODEL TO EXTRACT TOKEN FEATURES AND
RANDOM MEANS WE RANDOMLY INITIALIZE TOKEN EMBED-
DINGS AND UPDATE THEM DURING TRAINING

Pooling Fusion Retrieval Token R@1(T) R@I(I) R@sum
max  late similarity BERT  77.5 59.5 504.8
mean late similarity BERT  75.7 58.2  498.1
first  late  similarity BERT  73.3 559 4869
max early similarity BERT  75.2 58.1  496.3
max late embedding BERT  76.8 589 5012
max late  similarity Random 76.4 575 4977

Fig. 3. The text retrieval R@1, image retrieval R@1, and R@sum variance

of our method when using different memory response sizes.

2) Alternative Choices: As shown in Table IV, the “max”
pooling strategy outperforms the other two, because the “max”
pooling strategy can capture the most striking characteristics
of each dimension. For fusion strategy, the late-fusion can
handle fine-grained alignment for texts of different lengths
separately, resulting in better performance than early-fusion.
The difference between two retrieval strategies is minor
and “similarity combination” strategy is slightly better than
“embedding combination” strategy.

Following Wu et al. [15], we adopt pre-trained BERT to
extract the token features. To further verify the effectiveness
of our method, we also try to randomly initialize token
embeddings and update them along with training. Comparing
the last row of Table IV with other baselines in Table I, our
method still outperforms all of them.

3) Effect of Memory Response Size: As shown in Figure 3,
the best memory response size for text retrieval R@1, image
retrieval R@1, and R@sum is 5. Besides, as the memory
response size increases, the model performance on all three
metrics first increases and then decreases. This might be
because that when the memory response size is large, the
noise in the memory responses degrades the quality of the

Image CE Text CE R@I(T) R@l1(I) R@sum

/ / 71.2 53.8 4754

Text Bank  Image Bank 77.5 59.5 504.8
Image Bank  Text Bank 75.9 58.1 497.8
Image Bank Image Bank 72.7 56.5 484.8
Text Bank Text Bank 73.0 55.3 488.7
Both Text Bank 74.5 57.6 493.3
Both Image Bank 74.9 57.5 494.1
Text Bank Both 74.9 57.9 493.9
Image Bank Both 74.3 57.6 491.7
Both Both 75.5 58.0 495.9

cross-embeddings. We also find that the text retrieval per-
formance drops faster than image retrieval as the mem-
ory response size increases. We conjecture that the image
retrieval ability is weaker than the text retrieval ability (see
Table 1), therefore, extracting cross-modal information from
the image memory bank may introduce more noise to the text
cross-embedding.

4) Effect of Memory Banks Arrangement: To further study
the effect of our text and image memory banks, we allow the
image (resp., text) self-embedding to search on image memory
bank, text memory bank, and both of these two memory banks.
The memory response size for each memory bank is set as 5.

As shown in Table V, we can find that using text
(resp., image) memory bank to enhance the image (resp.,
text) cross-embedding is the best strategy for our model.
Whereas, if we get the memory response values from the
memory bank of the same modality, the performance of
our model in combine-embedding space is better than the
performance in self-embedding (See Tables I and IV.), but
the improvement is limited. Besides, when we compare the
first, the second and the last row in Table V, we can find
that the cross-embedding enhanced by both memory banks
underperforms the cross-embedding enhanced by a single
same/cross modality memory bank. We suspect that modality
gap between memory response values from both memory
banks would degrade the quality of cross-embedding, because
cross-encoder needs to fuse both text and image information
into the text (resp., image) self-features for text (resp., image)
cross-features.

5) Effect of Fusion Strategy Arrangement: In Table IV,
we perform experiments on early- and late-fusion strategies,
but we keep the strategies for generating image and text
cross-embedding the same. Here, we study the cases of using
different fusion strategies to generate cross-embeddings.

As shown in Table VI, if we generate image
cross-embedding and text cross-embedding with different
fusion strategies, the performance of our model drops sharply.
We conjecture that the shared cross-transformer encoder leads
to the bad compatibility of different fusion strategies in a
model.
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TABLE VI

THE EFFECT OF DIFFERENT FUSION STRATEGY ARRANGEMENTS. IMAGE
CE (Resp., TEXT CE) MEANS THE FUSION STRATEGY USED TO
GENERATE IMAGE (Resp., TEXT) CROSS-EMBEDDING. EARLY AND
LATE REPRESENT EARLY-FUSION AND LATE-FUSION
STRATEGIES RESPECTIVELY

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE VIII

THE EFFECT OF MEMORY BANK USAGE RATIO ON FLICKR30 AND
MICROSOFT COCO (1K). USAGE RATIO, BANK S1ZE(T), AND BANK
S1ZE(I) REPRESENT TRAINING INSTANCE USAGE RATIO, TEXT
MEMORY BANK SI1ZE, AND IMAGE MEMORY BANK SI1ZE

Usage Ratio Bank Size(T) Bank Size(I) R@1(T) R@1(I) R@sum

Image CE Text CE R@I(T) R@I1(I) R@sum Flickr30K
Late Late 77.5 59.5 504.8 0% - - 72.1 57.1 4894
Early Early 75.2 58.1 496.3 20% 29,000 5,800 72.9 57.6  490.5
Late Early 71.9 55.9 476.8 40% 58,000 11,600 74.4 58.1 4934
Early Late 72.8 56.3 484.7 60% 87,000 17,400 76.8  58.8 498.1
80% 116,000 23,200 77.2 59.0 501.6
100% 145,000 29,000 77.5 59.5 504.8
TABLE VII Microsoft COCO (1K)
THE EFFECT OF DIFFERENT HYPER-PARAMETERS. d, h AND § REPRESENT 0% - - 752  60.7 5138
THE HIDDEN DIMENSION, THE NUMBER OF HEADS 20% 113,287 22,657 78.1 63.3 5225
AND THE MARGIN RESPECTIVELY 40% 226,574 45315 784 635 523.1
60% 339,861 67,972 78.3 63.1 5225
d h B R@I(T) R@Iid) R@sum 80% 453,148 90,630 784  63.6 5237
512 4 0.050 77.5 59.5 504.8 100% 566,435 113,287 78.5 63.7 5238
256 4 0.050 75.9 58.1 498.5
1024 4 0.050 76.2 58.3 499.1
23 é 8828 ;23 g 23 ggg§ For Flickr30K dataset, we can find that using about 60%
512 16 0'0 50 7 6.7 58' 4 499.8 training images and texts for memory search can achieve com-
512 4 0:025 75:7 57:8 495:9 parable results, but more training images and texts continue
512 4 0.100 76.9 587 502.3 to bring improvements. What’s more, for Microsoft COCO,
512 4 0.200 76.6 589 501.7 using only about 20% of training instances can achieve the

6) Effect of Hyper-Parameters: To verify the robustness of
our model, we report the results using different combinations
of hidden dimension d, number of heads /4, and margin £.

From Table VII, we can find that the performance of our
model remains stable as the hyper-parameters change in a
reasonable range. For margin f, if it is too small, the distance
between positive and negative image-text pairs would be too
small to be distinguished, whereas, if it is large, the general-
ization ability of our model will also be affected negatively.
For hidden size d, if it is too small, the model might lose
the information in self-embedding and cross-embedding space
when projecting token features (resp., region features) from
token feature size d; (resp., region feature size d;) to the hidden
size d. Otherwise, the increasing amount of parameters in our
model can also lead to over-fitting and poor generalization
from training set to test set.

D. Analysis on Memory Bank Size

For the experiments in Table I and II, the image (resp., text)
memory bank consists of all the training images (resp., texts).
To analyze the effect of memory searching space, we randomly
select a subset from all training images (resp., texts) as the
new image (resp., text) memory bank. Besides, the training
and retrieving processes share the same usage ratio, which
is the ratio of the selected images (resp., text) to the all
training images (resp., texts). Then we conduct experiments
on both Flickr30K and Microsoft COCO datasets, and report
the text retrieval R@1, image retrieval R@1, and R@sum of
MEMBER(Comb) in Table VIII.

comparable performance with the state-of-the-art performance.
Comparing the size of text (resp. image) memory bank
between Flickr30K and Microsoft COCO, we can conclude
that about 120,000 texts and 24,000 images are enough to
build the memory bank for our proposed MEMBER, which
saves lots of time when the training set is large.

E. Time Complexity Analysis

Given N images and M texts, the time complexity of
retrieval for embedding learning methods is O(kiNM +
ko(M + N)), and that for pair-wise learning methods is
O(ksNM + ks(M + N)), where the ki, k2, k3, and k4 are
time complexity of inner product of two vectors, embed-
ding generation in embedding learning methods, calculating
pair-wise similarity with fine-grained alignment, and feature
preparation in pair-wise learning methods. Usually, these four
time complexities satisfy k» ~ k3 =~ k4 > ki, so embedding
learning methods are much faster than pair-wise learning
methods.

The process of generating self/cross-embedding is relatively
complex due to fine-grained alignment and fusion, but they
are only performed based on top-n,, memory responses for
each image and text. So our model is still more efficient than
pair-wise learning methods.

To verify that our MEMBER strikes a good balance between
efficiency and effectiveness, we compare the retrieval time
with two embedding-learning methods (i.e., VSRN [10] and
SAEM [15]) and three pair-wise learning methods (i.e.,
SCAN [3], PFAN [19], and IMRAM-full [4]) based on their
released codes and hyper-parameters on Flickr30k test set,
which contains 1,000 images and 5,000 texts to perform bi-
directional retrieval. For fair comparison, all methods are run
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Text Retrieval Samples Image Retrieval Samples

A man with a red helmet on a small moped on a dirt
—Toad ]

. A grey cat sitting in chair next to a table.

. A cat sitting in a chair by a table.

. A cat sitting in a chair pulled up to a table.

. A cat sitting in a chair at a table with a book on it.

. A gray tiger cat sitting at a wooden table on a chair.

L S O R O

A young girl inhales with the intent of blowing out a candle.

. Lady in front of a store standing on a pink skateboard.

. A girl coming home from the store on her skateboard.

A woman is riding her skate board down the sidewalk.

A woman who is skateboarding down the street.

A girl is skateboarding down the Hollywood walk of fame.

N

A cow standing near a curb in front of a store.

A motorcycle sits parked across from a herd of livestock.

A motorcycle in the foreground parked in a dirt parking lot. |
A motorcycle parked on top of a sandy beach . i
A multicolored motorcycle rests outside of a sheep farm.

A motorbike , people and sheep in the background.

Lk W=

Fig. 4. Examples of image retrieval and text retrieval results. We show the top 5 retrieved texts for each image query and top 3 retrieved images for each
text query. The correct textgsp, image) retrieval results are in green coleesp, boxes) and the incorrect ones are in red cotesff, boxes).

TABLE IX TABLE X
RETRIEVAL TIME COMPARISONWITH EXISTING MODELS ONFLICKR30K  THE EFFECT OF MEMORY BANK SIZE ON THE INFERENCE TIME OF
TESTSET. FOR EMBEDDING LEARNING METHODS, THEY ONLY CON- FLICKR30. BANK SIZE(T), BANK SIZE(l), SELF, SEARCH, CROSSREP-
TAIN ki AND kp PART; FOR PAIR-WISE LEARNING METHODS, RESENT THE TEXT MEMORY BANK SIizE, THE IMAGE MEMORY
THEY ONLY CONTAIN k3 AND kg4 PART. MEMBER MEANS BANK SIZE, THE INFERENCE TIME OF SELF TRANSFORMER
OUR MEMBER IN COMBINED SPACEWITH FULL MEMORY ENCODER, THE INFERENCE TIME OF MEMORY SEARCH,
BANK AND MEMBER(60%) MEANS THAT WE ONLY AND THE INFERENCETIME OF CROSS
USE 60% TRAINING IMAGES AND TEXTS TO BUILD TRANSFORMERENCODER

THE MEMORY BANKS (SEE IV-D)

Bank Size(T) Bank Size(I) Self Search Cross Total

Learning 29,000 5,800 274s  54s  72.8s 105.6s
. Model k1(s) ka(s) k3(s) ka(s) Total(s) ’ > . . . .
Paradigm ! ? ° * 58,000 11,600 279s  6.7s 71.9s 106.5s
Pair-wise | SCAN [3] - - 5419 631 87,000 17,400  282s 7.8s 72.5s 108.5s
Learning | . LEAN[19]° |- - 549 101 650 116,000 23200  27.0s  89s 73.8s 109.8s
IMRAM-full [4]) - - 1561 90 1651 145,000 29000 268 10.8s 72.7s 1103s
VSRN [10] T 91 - - 92
Embedding| SAEM [15] 1 74 - - 75
Learning [ MEMBER(60%)| 1 107 - - 108 . . .
MEMBER 1 110 - i 11 Further, to provide more detailed analysis towards the

inference speed of our model, in Table X, we provide the
inference time of all three part&€. self-transformer encoder,
on a computer with RYZEN 3700x CPU@3.60GHz, 32GBremory search and cross transformer encoder) of our model
memory and one GPU of GTX 1080TI with 11GB memory_With different memory bank sizes. We can bnd that as the
From Table IX, we bnd that tHe part for embedding learn- memory bank size changes, the time spent by self-transformer
ing methods and the, part for pair-wise learning methods areencoder and cross transformencoder is relatively stable,
quite similar. Even though our model has a relatively complédnd the time spent by memory search changes from 5.4s
feature encoder, we only spend about 15% more timk,in t0 10.8s as the memory banks size changes from 29,000
part than most of existing methods. Moreover, kiepart for texts and 5,800 images to 145,000 texts and 29,000 images.
embedding learning methods is much faster tharkgfpart for Note that, the memory search is Pnished on CUDA device,
pair-wise learning methods, which also veribes our theoreti¢gerefore, the time variation is not proportional @(nm),
analysis above. Therefore, our model is much more efpcigeren is the size of the memory bank amd is the size
than the pair-wise learning methods. Besides, the reductiondhinference dataset. Besides, the cross encoding between the
the memory bank size cannot save much time, which reve#izage or text self-features and all the memory response values
that the memory search mress does not cost much timecan also be done on CUDA device in parallel, which make
Totally, our retrieval time is slightly longer than SAEM [15]inference time ratio between cross transformer encoder and
and VSRN [10], but our performance is signibcantly bett&elf-transformer encoder less than the memory response size,
than SAEM [15] and VSRN [10] (see Tables | and II). i.e.5. In fact, if we set the memory bank size around 120,000
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Text Retrieval Samples Image Retrieval Samples

) A trainer lead a girl on horseback to a field .
Horse stand and drink from pond water near the road .

Horse near a body of water with a sky background .
Horse behind a fence near a body of water .

Horse grazing in a muddy portion of a flood field .
Five horse next to a body of water behind a fence .

MEMBER

SAEE IRl

. Five horse next to a body of water behind a fence . MEMBER

Two horse walk through the wood together . ,
. Horse grazing in a muddy portion of a flood field . E

A line of horse be lead by one white horse .
Horse stand and drink from pond water near the road .

R

VSRN

VSRN

Horse grazing in a muddy portion of a flood field .
Horse behind a fence near a body of water .

Five horse next to a body of water behind a fence .
Horse be race next to motorcycle on a dirt track .

. Horse near a body of water with a sky background .

NhARWN -

IMRAM

A pair of elephant line up next each other in an enclosure .
. A lot of people walk down a cover walkway .

1
2. People walk on tile in an arch hallway .

3. Many people be walk along through the hallway .
4

5

. Several people milling about in a lobby area .
. A group of people walk down a street near a river .

MEMBER

. Many people be walk along through the hallway .
People walk on tile in an arch hallway .
Several people milling about in a lobby area .

E MEMBER
. People be walk along the sidewalk next to a river . E

I

A lot of people walk down a cover walkway .

VSRN

VSRN

Several people milling about in a lobby area .
Horse behind a fence near a body of water .

Many people be walk along through the hallway .
People walk on tile in an arch hallway .

Horse near a body of water with a sky background .

NhEWN =

IMRAM

. . A half eat burger with a plate of fry next to mason jar .
. Two glaze donut sit in a white bag .

1

2. Sugar donut sit in a white paper bag .
3. Two glaze donut sit in a paper bag .
4
5

. Two sugary donut be in the bottom of a bag .
. Two glaze doughnut in a see through pastry bag .

MEMBER

MEMBER

. Two glaze donut sit in a paper bag .

Some donut be on a round white plate .

Two sugary donut be in the bottom of a bag .
Two glaze doughnut in a see through pastry bag .
Two glaze donut sit in a white bag .

VSRN

VoE e =

VSRN

Two glaze donut sit in a white bag .

Two glaze doughnut in a see through pastry bag .
Sugar donut sit in a white paper bag .

Two sugary donut be in the bottom of a bag .
Two glaze donut sit in a paper bag .

IMRAM

NA W=

IMRAM
Fig. 5. Examples of image retrieval and text retrieval results. Follow taiceselection rule, we select three images and three texts to compare with

VSRN [10] and IMRAM-full [4]. We show the top 5 retrieved texts for each image query and top 3 retrieved images for each text query. The correct text
(resp, image) retrieval results are in green coleesp, boxes) and the incorrect ones are in red cotesy§, boxes).
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Image Queries and Text Queries and
their Top 5 Text Memory Responses their Top 5 Image Memory Responses
A man on a bicycle riding next to a train.

A young girl is taking a nap next to her mother .
A young boy with a tennis racket and ball .

A small boy in a red shirt is playing tennis

The two women are playing a game of tennis .
A person walks a bike and holds an umbrella.

A dog sitting on a bench next to an old man .

A long flower in a small vase of water.

A notebook with a pen is placed next to a clock .

Men in costume on horseback in a park .

A vase of flowers sitting next to a ribbon and a grinder.
There is a woman sighting alone outside on a bench.

Fig. 6. The returned imageseép, texts) from the memory bank with the input texeégp, image). The local corresponders between images and texts are
highlighted with different colors.

texts and 24,000 images, the memory search spends phe), all these three methods are capable of retrieving right
shortest time in these three parts. Based on these experinmerdges or texts. However, when the situation gets complex,
results and aforementioned theoretical analysis, our model hlas VSRN [10] tends to ignore some key information, like the
the speed advantage of embedding learning paradigm and#s trainer leadO in the Prst image retrieval sample and the
suitable for online test as other models in embedding learni@alf eat burgerO in the third image retrieval sample. On the

paradigm. contrary, our MEMBER can not only handle both simple and
complex situation, but also can retrieve the matching images
F. Case Study or texts with a higher rank than IMRAM [4].

In Figure 4, we provide some text retrieval and image o o ]
retrieval results. For each imagee¢p, text) query, we show C- Visualization and Qualitative Analysis
top-5 (esp, top-3) ranked textsrésp.,images), where mis- As mentioned in Sec. 1lI-C.2, when using a texegp,
matched texts résp., images) are marked as redegp., image) to search the imagee$p, text) memory bank, the
enclosed by red boxes). These results show that our MEMBE®&urned imagerésp, text) features from the memory bank
method can retrieve the matching images or texts with do not strictly match this query textelsp, image) because we
relatively high rank. Besides, our method can also captunave bltered out its matched imagessp, texts) in the mem-
local correspondences. For example, in the brst image retriesgl bank. So our goal of memory-based enhancement is to
samples, the Ored helmetO and Odirt roadO can be well matekteaict useful cross-modal information from loosely matched
However, for some confusing cases, our model still cannpairs. To validate this point, we visualize the input image
distinguish some subtle changes in background, like the Ocuie®p, text) and the returned textseép, images) in Figure 6.
in the third image retrieval samples. We utilize the attention weight from the cross-learning stage

In Figure 5, we visualize another three text retrieval samplés generate the cross-modal local correspondence in Figure 6.
and three image retrieval mples, and compare with theBy taking image-to-text retrieval as an example, given an
state-of-the-art models in embedding learning paradigen, image self-feature and a memory response value, we brst
VSRN [10] and pair-wise learning paradigive. IMRAM [4].  use multi-head attention mechanism to calculatattention
To follow a certain principle and avoid deliberate samplingyeights A; j [ 1,h] (see Equ. (1)). Then we average
we Prst sort all images along with their corresponding textisese attention weights to get the Pnal attention weight
in validation set of Microsoft COCO by increasing the COC@®inally, We select the local correspondence according to the
id to get the sorted id for images and texts. Since each imagries larger than 0.9 iA. Color correspondence in Figure 6
corresponds to bve texts, the sorted id of images ranges frodicates the local correspondence between regions in images
[1,1000], and the sorted id of texts ranges from [1, 5000dnd words in texts. From these examples, we bnd that most
For text retrieval samples, we select the image every oogthe returned imagesdsp, texts) have local correspondence
hundreds images based on the sorted indices from 100. Fdgth the input text (esp, image). In the example OA man on
image retrieval samples, we select the text every bve hundradbicycle riding next to a trainO, returned images have the
texts based on the sorted indices from 501 to prevent overlzgrresponding objects, ObicycleO, OmanO, and OtrainO, where
between selected images and texts. the related region and word are highlighted in the same color.

From these samples, we can bnd that, under relativ&ince each of these returned imagessp, texts) can only
simple situation i(e. the donut sample and the elephant sanprovide part of the local correspondences, it is important
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to aggregate top-5 returned imagessp, texts) from the [18]
memory bank.

V. CONCLUSION [19]

In this paper, we have studied image-text retrieval from
a new viewpoint,j.e.,, enhancing embedding via Dne-graine%
alignment and fusion. We have proposed a novel meth 8]
for memory-based mutual embedding enhancement, with the
retrieval performed in both self-embedding space and cros&!
embedding space. Besides, our method maintains a relatively
fast speed. Comprehensive experiments on two benchmgedy
datasets have demonstrated that our method remarkably out-
performs the state-of-the-art approaches. 23]
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