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ABSTRACT
Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is to use free-
hand sketches as queries to perform instance-level retrieval in an
image gallery. Existing works usually leverage only high-level in-
formation and perform matching in a single region. However, both
low-level and high-level information are helpful to establish fine-
grained correspondence. Besides, we argue that matching different
regions between each sketch-image pair can further boost model
robustness. Therefore, we propose Multi-Level Region Matching
(MLRM) for FG-SBIR, which consists of two modules: a Discrimina-
tive Region Extractionmodule (DRE) and a Region and Level Attention
module (RLA). In DRE, we propose Light-weighted Attention Map
Augmentation (LAMA) to extract local feature from different re-
gions. In RLA, we propose a transformer-based attentive matching
module to learn attention weights to explore different importance
from different image/sketch regions and feature levels. Further-
more, to ensure that the geometrical and semantic distinctiveness is
well modeled, we also explore a novel LAMA overlapping penalty
and a local region-negative triplet loss in our proposed MLRM
method. Comprehensive experiments conducted on five datasets
(i.e., Sketchy, QMUL-ChairV2, QMUL-ShoeV2, QMUL-Chair, QMUL-
Shoe) demonstrate effectiveness of our method.
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1 INTRODUCTION
With the popularization of touch screen devices, abstract free-hand
sketches have become an importance approach to interpret person-
alized needs of users. Thus, the research of Sketch-Based Image
Retrieval (SBIR) has attracted increasing attention recently. The
SBIR task can be categorized into Coarse-Grained category-level
SBIR (CG-SBIR) [2, 6, 22] and Fine-Grained instance-level SBIR (FG-
SBIR) [5, 19, 21, 25, 29, 40, 48] by retrieval granularity. CG-SBIR
retrieves an image in the gallery based on the category of query
sketch while FG-SBIR retrieves a specific image that shares the
same pose and outline. FG-SBIR has a wide range of applications
in many fields such as searching online images or products.

Targeting at FG-SBIR, a number of existing works seeks to estab-
lish fine-grained correspondence by region matching: 1) attention
mechanisms[33, 48] explore to select a discriminative region to sup-
port region matching, but a single region might not able to learn
good fine-grained correspondence; 2) although part annotations
are beneficial to part-level matching[16], such side information
might be unavailable or expansive; 3) recent works[26, 37] also di-
vides images and sketches into grids to learn local correspondence.
Whereas, a grid region might not contain semantically significant
information. Besides, DLA[37] discovers that intermediate features
are helpful to FG-SBIR. However, DLA simply discarded the last
net block and did not take advantage of high-level information.

To overcome weaknesses of the existing works, we incorpo-
rate local information and low-level Convolutional Neural Net-
works(CNN) features into retrieval. Therefore, we propose multi-
level region matching (MLRM) for FG-SBIR. MLRM first extracts
features from different levels and regions by a Discriminative Region
Extraction (DRE) module. Then a Region and Level Attention (RLA)
module is adopted to learn attention weights to explore different
contribution from different regions and levels.

In DRE, we propose a novel Light-weighted Attention Map
Augmentation structure (LAMA) to extract discriminative atten-
tion maps. Inspired by CAMA[41], which adopts multiple network
blocks for different regions, our LAMA reuses the same block to
learn more generalizable discriminative regions. After that, we
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explore a novel LAMA overlapping penalty and a local region-
negative triplet loss to make different regions both geometrically
and semantically discriminative. Furthermore, considering that
low-level information (e.g., texture, color and outlines) is helpful to
establish fine-grained correspondence[20, 23], the attention maps
obtained from LAMA are employed on both high-level and low-
level feature maps to obtain region features.

In RLA, we convert region features into a sequence. Then a trans-
former encoder[34] is adopted to learn attention weights for differ-
ent feature levels and image/sketch regions. Since the transformer
is permutation-invariant, we construct a geometry map based on
each region feature to learn different positional embeddings. At
last, given a sketch-image pair, we compute feature distance of each
level and region. The obtained distances are summed by learned
attention weights as the retrieval distance. To distinguish some im-
ages that share similar parts with the query sketch, we also propose
a novel global region-negative triplet loss.

Comprehensive experiments on five benchmark datasets [29, 42]
(i.e., Sketchy, QMUL-ChairV2, QMUL-ShoeV2, QMUL-Chair, QMUL-
Shoe) have verified the effectiveness of our MLRM method. Our
main contributions are summarized as follows: 1) We propose a
novel method named MLRM to perform multi-level region match-
ing for FG-SBIR. 2) We propose LAMA structure along with a
LAMA overlapping penalty and a local region-negative triplet loss
to extract geometrically and semantically discriminative regions. 3)
We design a novel transformer-based attentive matching approach,
which is enhanced by novel geometry features. 4) Our proposed
MLRM achieves the best performance on four benchmark datasets.

2 RELATEDWORK
2.1 Coarse-Grained SBIR
Coarse-Grained SBIR (CG-SBIR) was firstly proposed by Kato et
al. [14], aiming to learn a feature space that closes the sketch-
image domain gap. Existing CG-SBIR methods could be categorized
into hand-crafted based methods and deep-learning based methods.
Generally speaking, hand-crafted based methods first extracted
edges maps from images and then designed hand-crafted features
to match the query sketches with images [8, 10, 11, 28]. Deep-
learning based methods using variants of siamese losses [33] and
ranking losses [47] were proposed for the CG-SBIR task. Tu et al.
[6] employ a two-stage training approach to better learn detailed
features. A graph-based searching method was proposed in [2] to
re-rank the retrieved images. Besides, CG-SBIR was also extended
to the zero-shot setting [15, 31, 45] recently.

2.2 Fine-Grained SBIR
Fine-Grained SBIR (FG-SBIR) was firstly proposed by [18], which
defined FG-SBIR as retrieving the image with the same attributes
(e.g., viewpoint and body configuration) as the query sketch. Yu et
al. [42] extended the definition, requiring the retrieved image to be
exactly paired with the query sketch. Since attribute annotations
might be unavailable, we follow the definition in [42] like most
existing works [5, 7, 19, 25, 27, 39]. Besides the huge sketch-image
domain gap, FG-SBIR needs to capture fine-grained sketch-image
correspondence, which makes it more challenging.

Qian et. al. introduced sketch augmentation approaches by stroke
deformation and stroke removal. Various classification losses were
proposed in [19, 29] to close the sketch-image domain gap. Seddati
et al. [30] explored a quadruplet loss to regulate both intra-class
and inter-class distances. To perform shape matching, images were
converted into edge maps to overcome the domain gap in [27]. To
enhance cross-domain generalization ability, several works intro-
duced text-domain triplet losses [12, 40]. Bhunia et. al. [4] sought
to detect noisy stroke via a reinforcement learning approach.

When the above methods manipulated global features of images
and sketches for matching, several works investigated local features
for FG-SBIR. By taking advantage of part labels, Li et. al. [18] utilized
a deformable part-based model [9] and a graph matching model
to perform part-level matching. A reinforcement learning method
was proposed in [5], in which the sketch representation at each
rendering step is rewarded by retrieving the paired photo early. Li
et al. [16] and Li et al. [17] proposed part-aware models for part
detection, which located object parts with a strongly-supervised
deformable part-basedmodel [1]. Although these works[5, 9, 16–18]
worked well in learning local features, the required side information
(e.g., part labels, stroke annotations or instance attributes) can be
unavailable or expansive in practice.

Attention mechanisms [33, 48] were introduced to learn fine-
grained correspondence, but only focused on a single region. Some
recent works[26, 37] divided images and sketches into grids to learn
local correspondence. Pang et. al. designed a multi-modal jigsaw
puzzle [26]. DLA [37] matched each sketch pixel with an image
pixel on the feature map. But simple grids might not be semantically
significant, probably leading to performance bottleneck.

Compared with previous works, MLRM extracts multiple seman-
tically discriminative regions without side information. Moreover,
we leverage both high-level and low-level features to learn fine-
grained correspondence.

2.3 Deep Discriminative Region Discovery
Without utilizing part-level annotations, discriminative regions
can be discovered by attention maps[36, 38, 48] or class activation
maps[24, 41, 46]. Most existing works focused on a single region
[38, 48] while others [35, 44] could discover multiple regions. Ap-
proaches based on adversarial erasing [24, 35, 44] learned multiple
discriminative regions in series. In contrast, Class Activation Maps
Augmentation (CAMA) [41] learned multiple activation maps in
parallel. However, CAMA used multiple branches and consumed
a large number of model parameters. The required class labels in
CAMA were also sometimes unavailable. Nevertheless, our LAMA
is light-weighted and able to learn multiple regions in parallel.

3 OUR METHOD
Our proposedMulti-Level RegionMatching model (MLRM) consists
of two modules: a Discriminative Region Extraction module (DRE)
and a Region and Level Attention module (RLA). The overview of
MLRM is shown in Fig. 1. DRE extracts discriminative regions based
multi-level CNN features by a novel LAMA structure (Fig. 2). Then
RLA utilizes a transformer encoder to convert multi-level region
features into region weights and level weights. In RLA, we also pro-
pose to construct a geometry map to obtain positional embeddings.
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Figure 1: An overview of MLRM. The two 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 in DRE are the same one.

At last, given a sketch-image pair, we can derive retrieval distance
using their region features and the obtained weights. The workflow
is the same for both sketches and images if not specified. When
introducing the retrieval distance (Sec. 3.2.3), we will distinguish
sketches and images by introducing two symbols 𝑠/𝑝 .

3.1 Discriminative Region Extraction
3.1.1 Multi-Level Feature Map Extraction. Following TC-Net[19],
DRE adopts DenseNet169[13] as backbone. DenseNet169 mainly
consists of 4 dense blocks and 3 transition blocks. The input sketch
or image is resized to 256 × 256[37]. We take advantage of in-
termediate outputs of the last 3 dense blocks, denoted by F′1 ∈
R512×32×32, F′2 ∈ R

1280×16×16, F′3 ∈ R
1664×8×8. Intuitively, F′1 con-

tains abundant low-level information (e.g., color, shape, and out-
lines) while F′3 contains abundant high-level information (e.g., poses,
categories and attributes) [20, 23]. DLA[37] shows that F′2 is the
best for establishment of fine-grained correspondence and simply
removes the last CNN block. This is because F2 strikes a balance be-
tween low-level and high-level information. However, our method
consider all these three levels. In order to unify the feature map
sizes, we adopt two CNNs to reduce F′1 into F1 ∈ R512×8×8 and F′2
into F2 ∈ R1280×8×8. For naming consistency, we also denote F′3 as
F3. We call F𝑙 as Level𝑙 feature map, 𝑙 ≤ 𝐿, 𝐿 = 3.

3.1.2 The LAMA Approach to Extract Different Attention Maps. In-
spired by Class Activation Map Augmentation (CAMA)[41] that
adopts three branches of network blocks to produce class activation
maps, we propose Light-weighted Attention Map Augmentation
(LAMA) to derive spacial attention maps to attend the obtained
multi-level feature maps, as shown in Fig. 2. LAMA learns an indi-
cator map from a one-hot indicator vector 𝑣𝑟 ∈ R𝑁 to supplement
intermediate featuremaps of the backbone. 𝑣𝑟 ∈ R𝑁 is a pre-defined
input. We set the 𝑟 -th element to 1 to obtain the 𝑟 -th attention map.

LAMA structure

1664x8x8Block1~3

[1, 0, 0] [0, 1, 0] [0, 0, 1]

MLP + expand
1664x8x8

1664x8x8
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Figure 2: LAMA and CAMA structure.

After that, the backbone output along with F2 and F1 is used to
generate an attention mapM𝑟 ∈ R1×8×8 through an attention CNN
𝐸𝐿𝐴𝑀𝐴 . The involvement of F2 and F1 is necessary because the
attention map aims to attend multi-level feature maps. In particular,
the procedure can be explained in formla:

F𝑟3 =𝐵𝑙𝑜𝑐𝑘4(𝐸
𝑣 (𝑣𝑟 ) + F′2);

M′𝑟 =𝐸𝐿𝐴𝑀𝐴 ( [𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (F𝑟3);𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (F𝑟3);𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (F2);
𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (F2);𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (F1);𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (F1)]);

M𝑟 =𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (M𝑟 −𝑚𝜏
𝑟 ),

(1)

where 𝑟 = 1, 2, · · · , 𝑁 and 𝑁 is the number of attention maps; 𝐸𝑣
contains fully connected (fc) layers with ReLU activation, transform-
ing 𝑣𝑟 into a vector of R1280 and then expanding it into R1280×16×16;
𝐵𝑙𝑜𝑐𝑘4 is the 4-th dense block of DenseNet169; 𝐴𝑣𝑔𝑃𝑜𝑜𝑙/𝑀𝑎𝑥𝑃𝑜𝑜𝑙

is channel-wise average/max pooling[36]; [...] is channel-wise con-
catenation;𝑚𝜏

𝑟 is the 𝜏-th largest element ofM′𝑟 . In vector 𝑣𝑟 , only
the 𝑟 -th element is 1 and the others are 0. One attention map locates
one local region. 𝜏 decides the region size. We empirically set 𝑁 = 3
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and 𝜏 = 3. It is a good way to generate multiple good-quality atten-
tion map by taking advantage of 𝐵𝑙𝑜𝑐𝑘4, which is able to leverage
semantic information learned by 𝐵𝑙𝑜𝑐𝑘4.

Compared with CAMA that makes 𝑁 copies of 𝐵𝑙𝑜𝑐𝑘4, LAMA
saves a large number of model parameters simply by using an
indicator vector. Moreover, LAMA requires no class labels and can
be accustomed to FG-SBIR. After that, we can obtain themulti-level
region features (region features in short): f𝑟,𝑙 = 𝐺𝐴𝑃 (M𝑟 ⊙F𝑙 ), where
𝑟 ≤ 𝑁, 𝑙 ≤ 𝐿 and 𝐺𝐴𝑃 is Global Average Pooling [20].

3.2 Region and Level Attention
3.2.1 Derivation of Gometry Maps and Positional Embeddings. Dif-
ferent regions and levels may contribute differently to the match-
ing procedure, so we introduce a Region and Level Attention mod-
ule (RLA) to attend the important regions and levels. Considering
that prediction of these attention weights should capture relations
among all regions and levels. We therefore adopt a transformer
encoder for this purpose. We assumes that region weights W𝑁 are
level-agnostic while level weights W𝐿 are region-dependent. So
the goal of RLA is to learn two matrix:W𝑁 ∈ R1×𝑁 ,W𝐿 ∈ R𝐿×𝑁 .
First we utilize 𝐿 different fc layers to reduce f𝑟,𝑙 into the same
dimension 𝑑 . Let the reduced features be denoted as f ′

𝑟,𝑙
. To ob-

tain W𝑁 , we derive a feature averaging reduced features of all
levels. For simplicity, let the averaged feature belongs to Level
𝐿 + 1: f ′

𝑟,𝐿+1 (𝑖) =
1
𝐿

∑
𝑙 f ′𝑟,𝑙 (𝑖). Since the transformer architecture is

permutation-invariant, a positional embedding is required for each
reduced feature. Considering that the positional embeddings should
be aware of both the level and region, we construct a geometry
map G𝑟,𝑙 ∈ R𝐿×8×8 from attention maps:

G𝑟,𝑙 (𝑖, 𝑗, 𝑘) =
{M𝑟 ( 𝑗, 𝑘), 𝑙 ∈ {𝐿 + 1, 𝑖};

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(2)

When 1 ≤ 𝑙 ≤ 𝐿, we only allow channel 𝑙 to specify the attended
region. Since features of level 𝐿 + 1 is an average of the previous
levels, we let all channels specify the attended region. Then a geom-
etry encoder 𝐸𝐺 consisting of CNN and MLP is adopted to encode
G𝑟,𝑙 (𝑖, 𝑗, 𝑘) into 𝑑-dimensional positional embeddings. We add po-
sitional embeddings to f ′

𝑟,𝑙
to retain positional information. Let the

obtained embeddings be denoted as f ′′
𝑟,𝑙
∈ R𝑑 .

3.2.2 Attention Weight Generation. The transformer encoder ex-
pects a sequence as input, so we concatenate f ′′

𝑟,𝑙
into a sequence

S ∈ R(𝐿+1)𝑁×𝑑 , where S(𝑁𝑙 − 𝑁 + 𝑟, ·) = f ′′
𝑟,𝑙
. Two fc heads are

inserted after the transformer encoder to obtain Region and Level
Attention weights. Let 𝐸𝑡 stand for the transformer encoder and
these fc heads, we can formulate the procedure: (W𝑁 ,W𝐿) = 𝐸𝑡 (S).
W𝑁 corresponds to the last 𝑁 outputs, i.e., S(𝑖 ≥ 𝑁𝐿 − 𝑁 + 1, ·).
W𝐿 corresponds to the first 𝑁𝐿 − 𝑁 outputs, i.e., S(𝑖 ≤ 𝑁𝐿 − 𝑁, ·).
At last, we can derive a global weight matrixW ∈ R𝐿×𝑁 :

W′𝐿 (·, 𝑟 ) =𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝐿 (·, 𝑟 )), 𝑟 ≤ 𝑁 ;
W(𝑙, ·) =𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑁 (1, ·)) ⊙W′𝐿 (𝑙, ·), 𝑙 ≤ 𝐿.

(3)

3.2.3 Retrieval via Attentive Matching. Having acquiring attention
wights for each region and level, we compute a global retrieval
distance between a given sketch 𝑠 and a given image 𝑝 . Taking 𝑠/𝑝
as superscript for related mathametical representation, i.e., region

features f𝑠
𝑟,𝑙
/f𝑝
𝑟,𝑙

and global weight matrices W𝑠 /W𝑝 . If the 𝑝 and 𝑠
are unpaired or not well aligned, their region-level weights can be
different. We sum the distances between f𝑠

𝑟,𝑙
and f𝑝

𝑟,𝑙
by an averaged

attention weights as the retrieval distance 𝐷 ′:

𝐷 ′(𝑠, 𝑝) = 1
2

∑︁
𝑟,𝑙

(W𝑠 (𝑙, 𝑟 ) +W𝑝 (𝑙, 𝑟 )) × 𝐷 (f𝑠
𝑟,𝑙
, f𝑝
𝑟,𝑙
) . (4)

3.3 Loss Functions
3.3.1 Overlapping Penalty. Overlapped regions are insignificant
for region matching. A CAMA solution is to employ an overlapping
penalty on the attention maps [41], which is formulated as:

L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 =
1
𝑁

∑︁
𝑥,𝑦

M1 ⊙M2 ⊙ · · · ⊙M𝑁 , (5)

where 𝑥,𝑦 are coordinates along X-axis and Y-axis respectively and
⊙ is element-wise multiplication. Intuitively, L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 penalize
the regions attended by all attention maps and enforce different at-
tention maps to locate different regions. However, since inactivated
pixels are close to zero, the penalty will be weakened in the regions
where the pixels are inactivated in some attention map. Therefore,
we propose a LAMA overlapping penalty:

L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 =
1

𝑁 × 𝑁
∑︁
𝑟 ≤𝑁

∑︁
𝑥,𝑦

M𝑟 ⊙ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (
∏

𝑟 ′≠𝑟,𝑟 ′≤𝑁
M𝑟 ′), (6)

where
∏

is continual channel-wise concatenation. For each atten-
tion map M𝑟 , L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 first aggregates activated regions of other
attention maps by 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 , and then reduces the overlapping
between M𝑟 and the aggregated attention map. The overlapping
penalty is able to make the regions geometrically discriminative.

3.3.2 Local Triplet Loss. We adopt a local triplet lossL𝑙𝑡𝑟𝑝 to make
region features in each level semantically discriminative:

L𝑙𝑡𝑟𝑝−𝑖𝑛 =𝑚𝑎𝑥 (𝐷 (f𝑟,𝑙 , f+𝑟,𝑙 ) − 𝐷 (f𝑟,𝑙 , f
−
·,𝑙 ) + (1 + e

−𝑙 )𝑚, 0);

L𝑙𝑡𝑟𝑝−𝑟𝑛 =𝑚𝑎𝑥 (𝐷 (f𝑟,𝑙 , f+𝑟,𝑙 ) − 𝐷 (f𝑟,𝑙 , f
+
𝑟−,𝑙 ) + (1 + e

−𝑙 )𝛼𝑚, 0);
L𝑙𝑡𝑟𝑝 =L𝑡𝑟𝑝−𝑖𝑛 + L𝑡𝑟𝑝−𝑟𝑛,

(7)

where f𝑟,𝑙 is the anchor feature; f+𝑟,𝑙 is the positive feature; f
−
·,𝑙 an

instance-negative feature and · can be any region; f+
𝑟 ′,𝑙

is a region-
negative feature;𝑚 is the triplet margin and 𝛼 is a scale parameter
ranging from 0 to 1;𝐷 is a distancemetric, usually L2 distance. In FG-
SBIR, the anchor is a sketch while positive/negative samples are im-
ages. There are two terms in L𝑙𝑡𝑟𝑝 . We refer to L𝑙𝑡𝑟𝑝−𝑖𝑛/L𝑙𝑡𝑟𝑝−𝑟𝑛
as local instance-negative/region-negative triplet loss: 1) The first
term L𝑙𝑡𝑟𝑝−𝑖𝑛 is similar to common triplet losses[19, 26, 29, 37]
that pull the positive feature closer to the anchor when pushing
negative feature away. Because low-level information (e.g. outlines)
should be more diversified than high-level information (e.g. cat-
egories), we relax the margin by a coefficient 1 + e−𝑙 . 2) Besides,
although L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 make regions geometrically different, it might
not ensure that different regions are semantically different and that
the same regions are semantically similar. In this case, the region
matching might not work well. So we propose the loss L𝑙𝑡𝑟𝑝−𝑟𝑛
that trys to push region-negative feature f+

𝑟−,𝑙 away by a tighter
margin 𝛼𝑚. With both L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 and L𝑙𝑡𝑟𝑝−𝑟𝑛 , we can extract
both geometrically and semantically discriminative region features.
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Sketchy (%) QMUL-ChairV2 (%) QMUL-ShoeV2 (%) QMUL-Chair (%) QMUL-Shoe (%)
Song et al. [32] (CVPR ’16) - - - 78.4 50.4
GN Triplet [29] (TOG ’16) 37.1 - - - -
SaN Triplet [42] (CVPR ’16) 36.2 56.6 30.9 72.2 52.2

Quadruplet [30] (ACM MM ’17) 42.2 - - - -
DSSA [33] (ICCV ’17) - - 33.7 81.4 61.7

Radenovic et al. [27] (ECCV ’18) - - - 85.6 54.8
DCCRM [40] (PR ’19) 46.2 - - - -

TC-Net [19] (ACM MM ’19) 40.8 65.3 40.2 95.9 63.5
Bhunia et al. [5] (CVPR ’20) - (89.7) (79.6) - -
Pang et al. [26] (CVPR ’20) - - 36.5 96.0 56.5
Bhunia et al. [3] (CVPR ’21) - 60.2 39.1 - -
LA [37] (ACM MM ’21) 43.1 64.8 42.3 93.8 57.4
DLA [37] (ACM MM ’21) 54.9 69.2 50.2 99.0 79.1
Zhang et al. [43] (PR ’22) - - - 84.4 65.7

AE-Net [7] (PR ’22) 46.0 - - - -
Bhunia et al. [4](CVPR ’22) - 64.8 43.7 - -

MLRM (ours) 57.2 74.3(98.2) 50.4(87.9) 99.0 67.0

Table 1: acc@1(acc@10) comparison with previous works.

TC-Net[19] LA [37] DLA [37] MLRM (ours)

QMUL-ChairV2 Time (s) 5.3 27.5 236.7 11.8
acc@1 (%) 65.3 64.8 69.2 74.3

Sketchy Time (s) 8.2 46.8 639.3 14.1
acc@1 (%) 40.8 43.1 54.9 57.2

Table 2: Retrieval time comparison using the same GPU.

3.3.3 Global Triplet Loss. To optimizeW𝑠 andW𝑝 , a global triplet
loss is employed on 𝐷 ′(𝑠, 𝑝):

L𝑔𝑡𝑟𝑝−𝑖𝑛 =𝑚𝑎𝑥 (𝐷 ′(𝑠, 𝑝+) − 𝐷 ′(𝑠, 𝑝−) +𝑚, 0);
L𝑔𝑡𝑟𝑝−𝑟𝑛 =𝑚𝑎𝑥 (𝐷 ′(𝑠, 𝑝+) − 𝐷 ′(𝑠, 𝑝+𝑟 ′) + 𝛽𝑚, 0);
L𝑔𝑡𝑟𝑝 =L𝑔𝑡𝑟𝑝−𝑖𝑛 + L𝑔𝑡𝑟𝑝−𝑟𝑛,

(8)

where 𝑝+/𝑝− is paired/unpaired with 𝑠 ; 𝛽 ranges from 0 to 1, similar
to 𝛼 in Eq. 7; 𝑝+

𝑟 ′ stands for a constructed region-negative image,
𝑟 ′ ≤ 𝑁 . In each level, we replace the 𝑟 ′-th region feature of 𝑝+ with
that of 𝑝− to construct 𝑝+

𝑟 ′ . Specifically, let S𝑝 = {f𝑝𝑟,· |𝑟 ≤ 𝑁 } be
the feature set generated from 𝑝 . Then 𝑝+

𝑟 ′ corresponds to feature
set S𝑝+

𝑟 ′
= {f𝑝+𝑟,· |𝑟 ≠ 𝑟 ′, 𝑟 ≤ 𝑁 } ∪ {f𝑝−𝑟,· |𝑟 = 𝑟 ′}. W𝑝+

𝑟 ′ is derived
from S𝑝+

𝑟 ′
. 𝐷 ′(𝑠, 𝑝+

𝑟 ′) is calculated based on S𝑝+𝑟 ′ and S𝑠 in Eq. 4. We
only replace the region feature, and do not replace the positional
embeddings. Then there is only one unpaired region between 𝑝+

𝑟 ′

and 𝑠 , so we employ a tighter triplet margin 𝛽𝑚 in L𝑔𝑡𝑟𝑝−𝑟𝑛 . Unlike
the common L𝑔𝑡𝑟𝑝−𝑖𝑛 , L𝑔𝑡𝑟𝑝−𝑟𝑛 enables our model to distinguish
the negative images that might share some similar parts with 𝑠 .
We refer to L𝑔𝑡𝑟𝑝−𝑖𝑛/L𝑔𝑡𝑟𝑝−𝑟𝑛 as global instance-negative/region-
negative triplet loss.

3.3.4 The Total Loss. At last, we can derive the total loss:

L𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑔𝑡𝑟𝑝L𝑔𝑡𝑟𝑝 + 𝜔𝑙𝑡𝑟𝑝L𝑙𝑡𝑟𝑝 + L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎, (9)

where 𝜔𝑔𝑡𝑟𝑝 and 𝜔𝑙𝑡𝑟𝑝 are loss weights.

4 EXPERIMENTS
4.1 Experiment Setup
Datasets. We evaluate our MLRM method on five benchmark fine-
grained sketch-image datasets:

Sketchy [29] is the largest fine-grained sketch-image dataset,
totally containing 74425 sketches and 12500 images from 125 cate-
gories. Each image is paired with at least five sketches. Images in the
Sketchy dataset can be quite noisy and the paired sketches can also
be misaligned (e.g., the sketch can be scaled, rotated, or distorted).
Besides, there could be several very similar images. These factors
makes this dataset challenging. Following [29], 90% images and
their paired sketches are used for training and the rest for testing.
To take advantage of the class labels in Sketchy, instead of inserting
a classification head[37], we fill in a batch with sketch-image pairs
from different categories and the same category alternately.

QMUL-Shoe andQMUL-Chair [42] contain 419 and 297 sketch-
image pairs respectively, where each image is paired with only one
sketch. All the images and sketches in these two datasets are clean
and well aligned. Following the split of [42], 304/200 pairs of QMUL-
Shoe/QMUL-Chair are used for training and the rest for testing.

QMUL-ShoeV2 and QMUL-ChairV2 [42] are extensions of
QMUL-Shoe and QMUL-Chair respectively. Each image is paired
with at least three sketches in these two datasets. Similarly, im-
ages and sketches in this dataset are clean and well aligned. There
are totally 2000/400 images and 6730/1275 sketches in the QMUL-
ShoeV2/QMUL-ChairV2. Following [19], we use 1800/300 images
and their paired sketches for training and the rest for testing.
Implementation Details. Please refer to Supplementary at https:
//github.com/1069066484/MLRM-ACMMM2022.

4.2 Comparison with Previous Works
Accuracy comparison.We compare MLRMwith 16 previous base-
lines and report the results in Tab. 1. On large datasets (i.e., Sketchy,
QMUL-ChairV2, QMUL-ShoeV2), MLRM consistently outperforms

https://github.com/1069066484/MLRM-ACMMM2022
https://github.com/1069066484/MLRM-ACMMM2022
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setting alternatives of MLRM Sketchy QMUL-ChairV2 QMUL-ShoeV2 QMUL-Chair QMUL-Shoe
S1 single region (𝑁 = 1) 47.3 67.9 41.8 95.9 49.6
S2 𝑤/𝑜 L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 46.1 66.2 40.7 92.8 47.8
S3 replace L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 with L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 55.0 68.8 47.0 96.9 59.1
S4 single level (only enable Level3) 54.8 57.6 44.1 85.6 43.5
S5 𝑤/𝑜 geometry maps (𝑓 ′′

𝑟,𝑙
← 𝑓 ′

𝑟,𝑙
) 55.0 72.4 48.7 86.0 61.7

S6 𝑤/𝑜 L𝑔𝑡𝑟𝑝 (𝐷 ′(𝑠, 𝑝) ← 1
𝑁×𝐿

∑
𝑟,𝑙 𝐷 (f𝑠𝑟,𝑙 , f

𝑝

𝑟,𝑙
)) 42.5 55.3 36.8 88.7 47.0

S7 𝑤/𝑜 L𝑙𝑡𝑟𝑝 52.5 70.0 43.8 94.8 57.4
S8 𝑤/𝑜 L𝑙𝑡𝑟𝑝−𝑟𝑛 (L𝑙𝑡𝑟𝑝 ← L𝑙𝑡𝑟𝑝−𝑖𝑛) 53.9 71.1 45.1 95.9 59.1
S9 𝑤/𝑜 L𝑔𝑡𝑟𝑝−𝑟𝑛 (L𝑔𝑡𝑟𝑝 ← L𝑔𝑡𝑟𝑝−𝑖𝑛) 55.9 72.9 48.8 97.9 62.6
S10 full model 57.2 74.3 50.4 99.0 67.0

Table 3: Ablation results.

previous works, among which DLA[37] is the best baseline. We
have the following observations: 1) On Sketchy, the largest and
most diversified dataset, MLRM outperforms DLA by 2.3% and the
second best by 11.0%. On QMUL-ChairV2/QMUL-ShoeV2, two large
clean and aligned datasets, MLRM outperforms DLA by 5.1%/0.2%
and the second best by 9.0%/6.7%. 2) On two small datasets (i.e.,
QMUL-Chair, QMUL-Shoe), MLRM outperforms previous works
beside DLA. On QMUL-Chair, MLRM has equivalent acc@1 as DLA
and outperforms the second best baseline by 3.1%. On QMUL-Shoe,
MLRM result is 12.1% lower than DLA but outperforms the second
best baseline by 1.3%. These results validates that MLRM is effective
and favors large datasets.
Retrieval Time Comparison. Tab 1 shows that DLA[37] is the
strongest baseline. Thus, we further compare retrieval time of
MLRM, DLA and several other representative works in Tab. 2. In
general, the ranking of retrieval time is: DLA≫ LA≫MLRM > TC-
Net. Although DLA achieves impressive performances, the retrieval
time is much longer than other works. TCNet retrieval pipeline
[19] is typical for most of works[29, 30, 42]. Given features from a
sketch and an image, TCNet simply computes a distance. MLRM
need compute 𝑁 × 𝐿 distances from pairs of region features. The
computation of MLRM is therefore about 9 times of TCNet, where
9 = 𝑁 × 𝐿. However, compared with the performance gain, the
extra computation overhead is acceptable.

In contrast, LA[37] computes the distance on the feature map
pixel by pixel. DLA[37] slides each sketch pixel over the whole
image to locate the matched image pixel. Let the feature map
size be 16 × 16, the computation overhead of LA/DLA is about
162/2562 times of TCNet. Despite the competitive performance of
DLA, MLRM certainly has good advantage in retrieval time (e.g.,
DLA 639.3s v.s.MLRM 14.1s on Sketchy).

4.3 Ablation Study
We do ablation study for MLRM and report the results in Tab. 3.
Setting S1-3 show the important role of region matching in MLRM.
Matching through a single region (S1) leads to poor performance
(S1 v.s S10). Moreover, overlapping penalty is crucial for region
matching. Without it, both of L𝑙𝑡𝑟𝑝−𝑟𝑛 and L𝑔𝑡𝑟𝑝−𝑟𝑛 would make
no sense, therefore leading to sharp performance drop (S2 v.s S10).
S3 validates that L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 prevents different regions from over-
lapping more efficiently than L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 does.

On Sketchy, misalignment of paired sketches and images results
in more mistakes in low-level matching. Different categories also
improve importance of Level3 information. Therefore, only enabling
Level3 (S4) make the Sketchy result drop by 2.4% while results on
other datasets drop much more sharply (at least 6.3%). S5 shows that
our positional embeddings can effectively supplement geometry
information for the RLA transformer encoder 𝐸𝑡 . The information is
helpful to learnW𝑁 andW𝐿 and then improvemodel performances.
S6 implies that different regions and different levels should have
different importance. A simple average of region feature distance
𝐷 (f𝑠

𝑟,𝑙
, f𝑝
𝑟,𝑙
) leads to a sharp performance drop.

L𝑙𝑡𝑟𝑝 can close the distance between paired region features, i.e.
f𝑠
𝑟,𝑙

and f𝑝
𝑟,𝑙
. Ablating it is harmful to model performance (S7). S8

reveals that L𝑙𝑡𝑟𝑝−𝑟𝑛 can further improve region feature quality
by enforcing different regions to be semantically discriminative.
Through L𝑔𝑡𝑟𝑝−𝑟𝑛 , more negative images that resembles the sketch
are fed into the RLA transformer encoder 𝐸𝑡 . It improves model
performance by at least 1.0% acc@1 on various datasets.

4.4 Further Study
4.4.1 Better Discriminative Regions: LAMA v.s. CAMA. DRE pro-
duces discriminative regions via LAMA. We study LAMA by com-
paring it against CAMA[41]. We visualize attention maps in Fig. 3
to study two related losses, i.e., L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 and L𝑙𝑡𝑟𝑝−𝑟𝑛 . We have
the following observations: 1) Compared with L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 , our
L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 prevents different regions from overlapping more ef-
fectively. With L𝑜𝑣𝑙−𝑐𝑎𝑚𝑎 (Fig. 3-(1)), two attention maps focus
on the same region, i.e., the chair bottom. In contrast, L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎

makes the three attention maps focus on the top, middle and bot-
tom of the chair respectively (Fig. 3-(3)). In other words, L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎

learns geometrically discriminative attention maps. 2) Our local
region-negative triplet loss L𝑙𝑡𝑟𝑝−𝑟𝑛 can enforce the regions to be
semantically discriminative. The three attention maps focus on dif-
ferent parts of the chair (Fig. 3-(3)). WithoutL𝑙𝑡𝑟𝑝−𝑟𝑛 , two attention
maps locate feet of the chair (M1 andM2 in Fig. 3-(4)), which might
not help much to region matching. 3)Without overlapping penalty,
all attention maps focus on the same region (Fig. 3-(2)). Although
L𝑙𝑡𝑟𝑝−𝑟𝑛 tries to make the regions semantically discriminative, it
does not directly manipulate the attention maps. Therefore, it fails
to learn the attention maps alone without L𝑜𝑣𝑙−𝑙𝑎𝑚𝑎 .
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Figure 4: LAMA and CAMA quantitative comparison.

strategy Definition of 𝐷 ′(𝑠, 𝑝) Sketchy QMUL-ChairV2
T1

∑
𝑟,𝑙 W𝑠 (𝑙, 𝑟 ) × 𝐷 (f𝑠

𝑟,𝑙
, f𝑝
𝑟,𝑙
) 56.4 73.2

T2
∑
𝑟,𝑙 W𝑝 (𝑙, 𝑟 ) × 𝐷 (f𝑠

𝑟,𝑙
, f𝑝
𝑟,𝑙
) 56.1 73.0

T3 E𝑟𝐷 (f𝑠𝑟,1, f
𝑝

𝑟,1) 28.1 51.1
T4 E𝑟𝐷 (f𝑠𝑟,2, f

𝑝

𝑟,2) 50.7 70.7
T5 E𝑟𝐷 (f𝑠𝑟,3, f

𝑝

𝑟,3) 54.0 69.4

T6 E𝑙

√︃∑
𝑟 𝑚𝑖𝑛𝑟 ′𝐷 (f𝑠𝑟,𝑙 , f

𝑝

𝑟 ′,𝑙
)2 45.2 64.9

T7 E𝑟,𝑙𝐷 (f𝑠𝑟,𝑙 , f
𝑝

𝑟,𝑙
) 46.9 66.5

T8 E𝑟,𝑙𝑚𝑖𝑛𝑟 ′𝐷 (f𝑠𝑟,𝑙 , f
𝑝

𝑟 ′,𝑙
) 47.0 66.5

T9 Eq. 4 (ours) 57.2 74.3
Table 4: Retrieval strategy comparison.

The difference between LAMA and CAMA network structures
is shown in Fig 2. In addition, we show their quantitative compar-
ison in Fig. 4. For fair comparison, we also supplement low-level
information in CAMA like the derivation of M′𝑟 in Eq. 1. On the
one hand, Fig. 4-(1) shows that 1) LAMA consistently outperforms
CAMA, which is probably because reusing of 𝐵𝑙𝑜𝑐𝑘4 in LAMA can
effectively boost generalization ability; 2) LAMA performance gain
becomes insignificant when 𝑁 ≥ 4, implying that setting 𝑁 = 3 is
enough for region matching. On the other hand, since the last net
block (e.g. 𝐵𝑙𝑜𝑐𝑘4 of DenseNet) is the most parameter-consuming,
LAMA saves a large number of parameters by merging 𝑁 branches
into one. In contrast, the parameter number of CAMA linearly
increases quickly as 𝑁 grows (Fig. 4-(2)).

4.4.2 Effectiveness of Attentive Matching. To further study RLA, in
Fig. 5, we visualize mean of the attention weights (e.g.,W𝑠

𝐿 (𝑙, 𝑟 ) =
E𝑠W𝑠

𝐿
(𝑙, 𝑟 )) and single-level single-region (SLSR) retrieval perfor-

mance. There is a difference between results on these two datasets:
compared with Sketchy, QMUL-ChairV2 relatively prefers Level2.
There might be two reasons: 1) Sketchy contains objects from
various categories and needs high-level features for retrieval; 2)
sketches and images of QMUL-ChairV2 are strictly aligned, so the
matching can focus more on low-level features and care less about
high-level features. Our conjecture can also be validated by SLSR
performances: Level3 retrieval on Sketchy obviously outperforms
Level2 while retrieval results in these two levels are close on QMUL-
ChairV2. SLSR comparison also shows that different feature levels
and image/sketch regions result in different retrieval performances.
Thus it is important to learn good attention weights.

of Sketchy images

of QMUL-ChairV2 sketches

of QMUL-ChairV2 images

of Sketchy sketches

region1       region2       region3

Level1

Level2

Level3

QMUL-ChairV2 SLSR retrieval acc@1 Sketchy SLSR retrieval acc@1

Figure 5: Visualization of average attention weights (e.g., W𝑠
𝐿

andW
𝑠
𝐿) and SLSR performance.

There are also three common observations on both datasets: 1)
ForW·

𝐿
:W·

𝐿
(1, ·) < W·

𝐿
(2, ·) < W·

𝐿
(3, ·), implying that high-level

features always helps thematching procedure; 2) the regionweights
W·

𝑁
are almost the same for both sketches and images, probably

implying that the extracted regions are semantically significant
and do not simply capture low-level information (e.g. outlines and
texture) that varies from one image/sketch to another; 3) There
is not much difference between W𝑠

𝐿
and W𝑝

𝐿
. Therefore we fur-

ther compute the standard deviation of each weight and find out
that 𝑆𝑡𝑑 (W·

𝐿
(𝑙, 𝑟 )) ≤ 0.06 for each 𝑙 ≤ 𝐿, 𝑟 ≤ 𝑁 , showing that

the attention weights for different images and sketches do not
vary very much. However, it does not indicate that combination
of sketch weights and image weights (Eq. 4) is helpless. We com-
pare different retrieval strategies in Tab. 4. T1/T2 shows that using
only sketch/image weights leads to 0.8%/1.1% performance drop on
Sketchy and 1.1%/1.3% performance drop on QMUL-ChairV2. So
weight combination of Eq. 4 is helpful.

Tab. 4 also reveals that retrieval in a single level (T3-T5) does
not leads to good performance. Moreover, it shows importance of
different levels depends on different datasets: 1) on Sketchy, Level3
> Level2 > Level1; 2) on QMUL-ChairV2, Level2 ≳ Level3 > Level1.
Because Level1 retrieval results in the worst performance on both
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Figure 6: Top-5 retrieval visualization on QMUL-ChairV2(row (1)-(3)) and Sketchy(row (4)-(6)). The sketches bordered in blue
are queries. The images bordered in green/red are positive/negative cases.

Sketchy QMUL-ChairV2

Level1 𝑤/𝑜 L𝑙𝑡𝑟𝑝−𝑟𝑛 0.157 0.116
𝑤 L𝑙𝑡𝑟𝑝−𝑟𝑛 3.675 6.540

Level2 𝑤/𝑜 L𝑙𝑡𝑟𝑝−𝑟𝑛 0.136 0.107
𝑤 L𝑙𝑡𝑟𝑝−𝑟𝑛 2.574 6.297

Level3 𝑤/𝑜 L𝑙𝑡𝑟𝑝−𝑟𝑛 0.257 0.162
𝑤 L𝑙𝑡𝑟𝑝−𝑟𝑛 2.882 3.924

Table 5: 𝐷𝑙 comparison.

datasets, we train MLRM by ablating Level1 to study its neces-
sity. The resultant acc@1 drops by 0.4%/0.9% on Sketchy/QMUL-
ChairV2. Therefore, Level1 is beneficial for MLRM.

Besides, we conduct retrieval using DLA-style region distance
(T6). DLA[37] slides each sketch pixel over the image feature map,
while T6 is like sliding each sketch region over all image regions.
Results show that T6 is inferior to our attentive matching (T9).
We also find 𝑇 6 close to 𝑇 7. We conjecture that it is because there
exists a equivalent relation between f𝑠

𝑟,𝑙
and f𝑝

𝑟,𝑙
:𝑚𝑖𝑛𝑟 ′𝐷 (f𝑠𝑟,𝑙 , f

𝑝

𝑟 ′,𝑙
) ≈

𝐷 (f𝑠
𝑟,𝑙
, f𝑝
𝑟,𝑙
). To further verify our conjecture, we conduct strategy

T8. It turns out that T8 has little difference with T7, validating that
L𝑙𝑡𝑟𝑝 can effectively bridge the distance between f𝑠

𝑟,𝑙
and f𝑝

𝑟,𝑙
.

4.4.3 How Does L𝑙𝑡𝑟𝑝−𝑟𝑛 Make Regions Semantically Discrimina-
tive? Sec. 4.4.1 and Fig. 2 qualitatively study the importance of
L𝑙𝑡𝑟𝑝−𝑟𝑛 for MLRM. In this section, we quantify its effectiveness by
comparing average intra-instance one-to-one region distances in
each level: 𝐷𝑙 = E𝑥 ∈{𝑠,𝑝 }E𝑟≠𝑟 ′𝐷 (f𝑥𝑟,𝑙 , f

𝑥
𝑟 ′,𝑙
). The results are reported

in Tab. 5. Without L𝑙𝑡𝑟𝑝−𝑟𝑛 , the table shows that region features
tend to converge to the same and 𝐷𝑙 becomes small. This is mainly
because the receptive field has covered the whole input image as
the network depth grows[23]. As a result, all region features mainly
contain global information. On the contrary, L𝑙𝑡𝑟𝑝−𝑟𝑛 can make
different region features semantically discriminative and contain
local information, therefore enlarging 𝐷𝑙 .

4.4.4 Case Study. We show top-5 retrievals and attended regions
in Fig. 6. In general, MLRM is able to retrieve the images that
share the same poses and categories with the query sketch. On
QMUL-ChairV2, since all images and sketches are well aligned, the
resultant attended regions are consistent in all cases. They are the

top, the middle and the bottom of chairs (row (1)-(3)). On the con-
trary, attended regions on Sketchy differ from one another due to
data misalignment and category variety. For example, the regions
in row (5) are respectively the head, the neck and the body of a
zebra (case 1), a rhino (case 3) and an elephant (case 4). These re-
sults demonstrate that MLRM is able to capture both geometrically
and semantically discriminative regions and effectively perform
region matching for images and sketches. We also conduct retrieval
through the 128-dimensional positional embeddings. The resultant
acc@1 is 0.8% on QMUL-ChairV2 and 1.0% on Sketchy. Consider-
ing that Sketchy is 40 times larger than QMUL-ChairV2, we can
conclude that our positional embeddings based on geometry maps
can well adapt to different poses and categories.

However, our method does not handle object size mismatch since
the activated region size is fixed by 𝜏 . This is one reason for the top-
1 failure of row (6), where the query sketch object is much larger
than the paired image object. In our future work, we will investigate
an approach that adaptively adjusts the region size. Another two
reasons for the row (6) failure may be: 1) The reflection in water in
the paired image (case 3) is mistaken for a part of the crane; 2) the
first two cases share quite similar outlines with the query sketch.

5 CONCLUSION
To establish fine-grained sketch-image correspondence, we pro-
pose a novel method named Multi-Level Region Matching (MLRM).
MLRM consists of two modules: Discriminative Region Extraction
(DRE) and Region and Level Attention (RLA). In DRE, we propose
LAMA to extract different attention maps to attend multi-level CNN
feature maps. To ensure geometrical and semantic distinctiveness
of the different attended regions, we explore a LAMA overlapping
penalty and a local region-negative triplet loss. In RLA, we adopt a
transformer-based attentive matching module to obtain attention
weights for different regions and levels. To distinguish similar im-
ages, we propose a global region-negative triplet loss.In the future,
we will seek to make region sizes self-adaptive to generalize MLRM
to more complex cases.
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