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Abstract

Image-text retrieval plays a central role in bridging vision
and language, which aims to reduce the semantic discrep-
ancy between images and texts. Most of existing works rely
on refined words and objects representation through the data-
oriented method to capture the word-object cooccurrence.
Such approaches are prone to ignore the asymmetric action
relation between images and texts, that is, the text has ex-
plicit action representation (i.e., verb phrase) while the im-
age only contains implicit action information. In this pa-
per, we propose Action-aware Memory-Enhanced embedding
(AME) method for image-text retrieval, which aims to em-
phasize the action information when mapping the images
and texts into a shared embedding space. Specifically, we
integrate action prediction along with a action-aware mem-
ory bank to enrich the image and text features with action-
similar text features. The effectiveness of our proposed AME
method is verified by comprehensive experimental results on
two benchmark datasets.

1 Introduction
In recent years, with the prevalence of deep learning and the
rapid growth of multimedia data on the internet, vision and
language understanding has become more and more impor-
tant. A large amount of research has been done to bridge
the modality gap between vision and language, including
image-text retrieval (Faghri et al. 2018; Lee et al. 2018), im-
age captioning (Vinyals et al. 2015), visual question answer-
ing (Antol et al. 2015), and visual commonsense reasoning
(Zellers et al. 2019). In this paper, we focus on image-text
retrieval, which aims to retrieve the texts (resp., images) that
describe the most relevant contents for a given image (resp.,
text) query.

To tackle this problem, a straightforward solution is to di-
rectly map images and texts into a shared embedding space,
which is regarded as embedding learning paradigm. These
approaches learn global representation within each modal-
ity and use different techniques like attention mechanism
(Nam, Ha, and Kim 2017) or graph convolution networks
(Li et al. 2019) to filter out irrelevant information. How-
ever, these approaches fail to explore the fine-grained cor-
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Figure 1: Possible image content for “A woman is <unk>
her skateboard down the road.” <unk> could be “riding”,
“holding”, and “checking”, corresponding to (a), (b), and
(c), respectively.

Method Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

VSRN (Li et al. 2019) 68.5 88.4 93.3 50.5 76.6 83.9
w/o verb 68.1 88.9 92.7 49.9 76.8 83.3
w/o noun 11.7 34.6 49.9 9.1 25.3 36.6

IMRAM (Chen et al. 2020a) 71.5 92.7 95.1 52.5 79.0 86.5
w/o verb 70.9 92.4 94.5 52.3 79.1 86.1
w/o noun 12.1 35.1 51.2 9.7 26.3 37.4

Table 1: The experiment results of VSRN (Li et al. 2019)
and IMRAM (Chen et al. 2020a) on Flickr30K (Young et al.
2014) with and without verbs/nouns in texts.

respondence between image objects and text words, lead-
ing to limited performance. Another type of works perform
fragment-level matching between objects and words, and ag-
gregate fine-grained similarities as the similarity between
images and texts (Chen et al. 2020a; Lee et al. 2018), which
is regarded as pair-wise learning paradigm. These methods
can capture the fine-grained correspondence between im-
ages and texts with state-of-the-art performance on bench-
mark datasets. Nevertheless, the fine-grained matching be-
tween each query and all candidates usually leads to slow
retrieval speed, which limits its real-world application.

Alongside the development of image-text retrieval, the
primary concern is to reduce the semantic discrepancy be-
tween images and texts. However, most of existing works
rely on refined words and objects representation through the
data-oriented method to capture the object-word cooccur-
rence between images and texts, that is, the objects in the
image have the corresponding words in the text. Whereas,



these methods are prone to ignore the asymmetric action re-
lation between images and texts, that is, texts have explicit
action representation (i.e. verb) while images only contain
implicit action information. In fact, action plays an essen-
tial role in image-text retrieval. Given an incomplete sen-
tence “A woman is <unk> her skateboard down the road.”,
where the <unk> can be riding, holding, checking and so
on. Different verbs correspond to different images, as shown
in Figure 1. Nevertheless, in both Flickr30K and Microsoft
COCO datasets, “riding” co-occurs with “skateboard” and
“man/woman” most frequently, which makes the retrieved
images biased towards Figure 1 (a) once “man/woman” and
“skateboard” appear in the query text.

To verify our hypothesis, we further experiment on
Flickr30K (Young et al. 2014) with the approaches from
both embedding learning paradigm (i.e., VSRN (Li et al.
2019)) and pair-wise learning paradigm (i.e., IMRAM (Chen
et al. 2020a)) in Table 1. To explore the effect of verbs (resp.,
nouns) towards these approaches, all the verbs (resp., nouns)
detected by Stanford CoreNLP model (Manning et al. 2014)
are replaced by “<unk>” in “w/o verb” (resp., “w/o noun”)
setting. As shown in Table 1, we can find that the explicit
action information in texts has little effect on image-text
retrieval (the performance gap is between ±0.7), whereas
the object information in texts determine the retrieval by a
large margin. The experiment results further indicate that
these approaches mainly rely on the object-word cooccur-
rence and tend to ignore the asymmetric action relation be-
tween images and texts. Therefore, we propose to emphasize
the action information to learn action-aware embedding for
image-text retrieval. In fact, GSNM (Liu et al. 2020) and
CVSE (Wang et al. 2020a) have already tried to combine
the object and action as a whole for image-text matching,
however, the experiments in Table 1 reveal that the action
information is the part that is in desperate need to be empha-
sized. Therefore, we choose to enhance the action represen-
tation on purpose.

In this paper, we propose Action-aware Memory-
Enhanced embedding (AME) method for image-text re-
trieval, as illustrated in Figure 2. In detail, we first build
a action-aware memory bank, which utilizes the explicit
action information (i.e., verb phrase) as the key and their
corresponding texts as values. Afterwards, we employ a
shared transformer encoder (Vaswani et al. 2017) to extract
fragment-level image (resp., text) features and image (resp.,
text) embeddings. Then a action predictor is applied to im-
age (resp., text) embeddings to obtain the image (resp., text)
action tags, which are defined as verb phrases. Next, the ob-
tained action tags are used to search for action-similar texts
from the action-aware memory bank, which are integrated
with fragment-level image and text features to produce the
action-aware embeddings. The action-awareness of our pro-
posed method is reflected in two aspects: 1) we use the im-
age and text embeddings to predict their corresponding ac-
tion tags; 2) we incorporate action-similar texts from action-
aware memory bank with fragment-level image and text fea-
tures to learn enhanced action-aware embeddings.

The effectiveness of our AME method is corroborated by
comprehensive experiments on two benchmark datasets. Our

main contributions are summarized as follows:
• To emphasize the contribution of action information, we

propose to learn action-aware embedding for image-text
retrieval task.

• We propose a novel AME approach, which incorporates
action-similar texts from the memory bank for action-
aware embedding enhancement.

• Comprehensive experiments on two large-scale bench-
mark datasets reveal that our method significantly out-
performs the state-of-the-art methods.

2 Related Work
2.1 Image-Text Retrieval
The key issue of image-text retrieval is to reduce the se-
mantic discrepancy between images and texts. For this pur-
pose, existing works can be categorized into two groups,
embedding learning paradigm (Frome et al. 2013; Faghri
et al. 2018; Kiros, Salakhutdinov, and Zemel 2014; Wang,
Li, and Lazebnik 2016; Li et al. 2019; Zhang and Lu 2018;
Gu et al. 2018; Vendrov et al. 2016; Nam, Ha, and Kim 2017;
Wu et al. 2019; Weikuo et al. 2019) and pair-wise learn-
ing paradigm (Karpathy, Joulin, and Fei-Fei 2014; Ma et al.
2015; Huang, Wang, and Wang 2017; Wu, Wang, and Huang
2017; Niu et al. 2017; Wang et al. 2020b; Lee et al. 2018;
Chen et al. 2020a; Chen and Luo 2020; Wang et al. 2018;
Li et al. 2017; Wang et al. 2019a,b,c; Chen et al. 2019; Liu
et al. 2019; Wehrmann, Kolling, and Barros 2020; Qu et al.
2020; Wei et al. 2020; Qu et al. 2021; Li et al. 2021).

Embedding Learning Paradigm: The embedding learn-
ing methods aim to learn a modal-invariant and representa-
tive embedding for each image and text. Faghri et al. (2018)
paid attention to the hardest negative with the triplet ranking
loss. Wu et al. (2019) applied self-attention layers to dis-
cover the relation among regions (resp., words) in images
(resp., texts) more accurately. Besides, Li et al. (2019) per-
formed reasoning with Graph Convolutional Networks to
generate features with visual-semantic relation. To further
exploit the relation within images and texts, Qu et al. (2020)
builds a gated self-attention and a multi-view summariza-
tion modules for intra-modal representation and cross-modal
matching.

Pair-wise Learning Paradigm: The pair-wise learning
methods aim to calculate the similarity between each image-
text pair more accurately with fine-grained alignment. To
capture structure information in images and texts, Liu et al.
(2020) utilized extra information to parse images and texts
into graphs, and adopted the Graph Structured Network to
match image graphs with text graphs. With the help of the
cross attention networks, Lee et al. (2018) obtained the im-
age (resp., text) features by attending each region (resp.,
word) feature to all word (resp., region) features, while Chen
et al. (2020a) proposed IMRAM to match fragments across
different modalities iteratively. To combine the intra-modal
reasoning and cross-modal alignment modules together, Qu
et al. (2021) proposed a dynamic router with the capability
to choose the path of different modality interactions.

Some works have also attempted to incorporate ac-
tion information within the modeling process. (Liu et al.



2020) correlated the object, action, and attribute in a same
graph and matched them with GCN. However, the im-
age region representations from Faster R-CNN still can-
not model the action information in image explicitly. Wang
et al. (2020a) exploited consensus-aware information in ex-
tra related datasets and enabled the embedding to predict
consensus-level concepts, including object, action and prop-
erty, which only roughly predict the semantic concept. Un-
like the above methods, our AME not only enables action
tag prediction, but also utilizes the action-similar texts to en-
hance the action-aware embedding.

2.2 Memory-Enhanced Network
Memory-enhanced network was proposed by (Weston,
Chopra, and Bordes 2014), which targets on enhancing the
long-term memory. (Miller et al. 2016) developed a key-
value memory network to utilize prior knowledge. After
that, memory-enhanced network has become popular in the
fields of computer vision (Chen et al. 2020b) and natural
language processing (Wang et al. 2016).

Memory-enhanced network has also been widely used in
multi-modal modeling. To name a few, Huang and Wang
(2019) aligned the cross-modal information in memory bank
for few-shot image-text retrieval. Song, Wang, and Tan
(2018) proposed a category-based memory bank for cross-
modal retrieval. Ji et al. (2020) stored inter- and intra-modal
information in memory bank to narrow the gap between two
modality. Note that the memory banks used in these works
either only captured category information or only utilized
local information. In contrast, our work utilizes global mem-
ory to facilitate action-aware embedding enhancement.

3 Methodology
In this section, we elaborate on Action-aware Memory-
Enhanced embedding (AME) method for image-text re-
trieval, as illustrated in Figure 2. In Sec. 3.1, we will present
the problem definition and notation. In Sec. 3.2, we will de-
tail our AME method, revealing how to emphasize the ac-
tion information for action-aware embedding. In Sec. 3.3,
we will describe the loss functions.

3.1 Problem Definition
Suppose we have a set of training images {xi

1, ...,x
i
Ni
} and

a set of training texts {xt
1, ...,x

t
Nt
} with provided match-

ing correspondence (each image has several matched texts),
whereNi andNt are the number of images and texts, respec-
tively. The goal of image-text retrieval is to learn a repre-
sentation model, which encourages the matched image-text
pairs closer than mismatched image-text pairs in the shared
embedding space. For clarity, in the remainder of this pa-
per, we will omit the index number of images/texts, and all
similarity is measured under cosine similarity. We use 1 to
denote an all-one column vector.

The overall structure of our proposed AME method is
illustrated in Figure 2, which includes three main com-
ponents: (1) fragment-level representation learning; (2)
action-aware memory search; (3) action-aware representa-
tion learning. During the first phase, we represent images

and texts by corresponding fragment-level features and em-
beddings through a transformer encoder. Based on the em-
bedding of each image and text, we employ a action pre-
dictor to get action tags, with which we further search for
some action-similar texts to obtain the action-similar text
features. Finally, with the assistance of another transformer
encoder, we fuse the action-similar text features with the
fragment-level image (resp. text) features to obtain the en-
hanced action-aware image (resp. text) embedding.

3.2 Action-aware Memory-Enhanced embedding
Fragment-level Representation Learning

Given an image xi and a text xt as a pair of inputs,
we first represent each of them at fragment level, i.e., rep-
resenting them as a sequence of feature vectors. For each
image, to capture the fragment-level regional information,
we follow (Lee et al. 2018) to use Faster R-CNN model
(Ren et al. 2015) to extract the region features, which em-
ploys bottom-up attention (Anderson et al. 2018) to pro-
vide convolutional feature for each image region. Therefore,
each image is represented as a sequence of image region
features I ∈ Rni×di = [i1, ..., ini

] ordered by the con-
fidence score, where ni is the number of regions and di
is the region feature dimension. For each text, we design
two kind of settings, 1) we apply word embedding (Pen-
nington, Socher, and Manning 2014) along with Bi-GRU
(Chung et al. 2014) to extra word features of each text; 2)
we employ pre-trained BERT (Devlin et al. 2019) to gen-
erate context-sensitive token features of each text, through
any of which we can represent each text as a sequence of
features T ∈ Rnt×dt = [t1, ..., tnt ], where nt is the number
of words/tokens and dt is feature dimension.

To encourage the information prorogation among regions
(resp., words) within each sequence of image (resp., text)
features, we apply a transformer encoder, which encourages
the intra-modal information propagation, to learn better im-
age (resp., text) representation.

First, we project region features I (resp. word features T)
into the same dimension d, which is denoted as Id (resp.
Td). Then, we employ a transformer encoder Ee, where the
input query, key, and value are all Id (resp., Td), and obtain
fragment-level image (resp., text) features Ie (resp., Te):

Ie = Ee(Id, Id, Id), Te = Ee(Td,Td,Td). (1)

Ee utilizes the feature-level similarity to encourage the
intra-modal information propagation among region (resp.,
word) features within each image (resp., text) to learn bet-
ter fragment-level image (resp., text) features Ie (resp., Te).
We utilize a siamese transformer encoder, where images and
texts share the same transformer encoder.
Action-aware Memory Search

Action Prediction. In texts, the action information is usu-
ally reflected by verbs. However, directly extracting the verb
as the action tag may be ambiguous. For example, “take”
has different meanings in “I will take you to the room” and
“I can take the basketball this afternoon”. Therefore, we
choose the verb phrase as the action tag to represent the ac-
tion information in each text. To predict the action tags of
each image and text, we first correlate the action tags with
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Figure 2: The flowchart of our AME method. We first adopt Bi-GRU(GloVe) (Chung et al. 2014) or BERT (Devlin et al. 2019)
(resp. Faster R-CNN (Ren et al. 2015) (bottom-up attention (Anderson et al. 2018))) to extract word (resp., region) features
from texts (resp., images), which are fed into transformer encoder to obtain text (resp., image) embeddings. Then, action-aware
memory search and action-aware representation are performed to enrich text (resp., image) features with action information,
resulting in action-aware text (resp., image) embeddings. The structure of transformer encoder layer is shown on the right.

each image and text in the training set. Specifically, given
a text containing several phrase chunks, we extract the verb
phrase based on the definition of dependency parsing, using
the off-the-shelf Stanford CoreNLP (Manning et al. 2014),
where the resultant verb phrases are regarded as the action
tags for each text. For example, in sentence “A man who
stands in the playground, is holding a racket.”, the follow-
ing will be selected as action tags: “stands”, “who stands”,
“stands in”, “stands in the playground”, “is”, “holding”, “is
holding”, “man is”, “man is holding”, “A man is”, “A man
is holding”, “is holding a racket”, “holding a racket”. To re-
duce redundancy, we replace all the words in verb phrase
with their stems, remove all the articles (a/an/the), adjec-
tive, and adverb, and delete the verb phrases appeared less
than 5 times in the whole dataset. After that, in the afore-
mentioned example, only “stand”, “stand in”, “stand in play-
ground”, “be”, “hold”, “be hold” will be kept. For images, it
is hard to extract the action tags directly, and hence we ex-
ploit matched image-text pairs in the training set to extract
the image action tags. In detail, for each image, the action
tags are generated by collecting all the action tags belonging
to its matched texts.

In the testing stage, the action tags do not exist in test
images and directly extracting verb phrase from test texts
may ignore some synonyms. Thus, in the training stage, we
train a action predictor based on fragment-level image and
text features. In detail, we first adopt a max-pooling layer to
aggregate fragment-level image Ie (resp., text Te) features
(choosing the max value in each dimension) as the image
ie (resp., text te) action embedding. Then we employ action

predictor to predict the action tags, which is formulated as:

mi,e = σ(Weie + be), mt,e = σ(Wete + be), (2)

where We and be are the parameters of the action predic-
tor for both images and texts, σ is the sigmoid activation
function. Here, we treat the prediction task as a multi-label
classification task with binary cross-entropy loss, which will
be elaborated in Sec. 3.3.

Memory Search. To emphasize the action information,
we attempt to enhance the image and text features with
action-similar texts. For this purpose, we construct a action-
aware memory bank to store all training texts. To facilitate
the memory search, we collect action tags from all training
texts in the same way as for action prediction. We treat each
action tag as a key and all the texts containing this action
tag as values, which are stored in the action-aware memory
bank. Note that here we only describe the memory search
procedure for images, as it goes the same for texts. After
using action predictor to get the action scores mi,e of an
image, we filter out the action tags with scores below the
threshold τm, and then select the action tags with top-nm
scores from the remaining action tags as the image action
tag candidates Mi. If the number of remaining action tags
is smaller than nm, all of them are maintained as the image
action tag candidatesMi.

To get the action-similar texts from the action-aware
memory bank, we search the memory bank with the pre-
dicted action tags. For each action tag in the action tag can-
didate Mi, we get an individual action-similar text set by
using each action tag as query to search from the memory
bank. Then, the union of all these action-similar text sets is



regarded as the action-similar texts of the action tag candi-
dates Mi. From all the action-similar texts, we randomly
select nr texts as a set of memory response texts Ri. To
facilitate action-aware embedding enhancement, we use the
fragment-level features of action-similar text in Ri as a set
of memory response features Ri.

Action-aware Representation Learning. Now for an
input image xi, we have its fragment-level features
Ie and action-aware memory response features Ri =
{Ri

1, . . . ,R
i
nr
}. To obtain the action-aware representation,

we fuse each item of the memory response features Ri
j with

the fragment-level features Ie through another transformer
encoder Em, and then calculate the average of outputs as
the action-aware image features Im:

Imj = Em(Ie,Ri
j ,R

i
j), Im =

1

nr

nr∑
j=1

Imj . (3)

Finally, the same max-pooling layer is employed to aggre-
gate the action-aware image features Im into a action-aware
image embedding im.

Note that the memory response features only concern the
action information predicted by the action predictor, which
may contain some irrelevant object descriptions. For exam-
ple, given the verb phrase “chase on field”, the memory re-
sponse texts could be either “A lion is chasing a zebra on the
field.” or “Three boys are chasing each other on the field.”.
Therefore, the memory response features could bring some
noisy information into the final representation. However, the
function of transformer encoderEm is to exploit the similar-
ity between each item of the memory response features Ri

j
and image features Ie to aggregate relevant parts and filter
out irrelevant parts in Ie, which prevent the noise in mem-
ory response features from being directly introduced to the
action representation.

Analogous to input image, we can also use an input text
xt to obtain corresponding memory response features Rt

and the enhanced action-aware text embedding tm via the
same transformer encoder Em.

3.3 Loss and Retrieval
Loss Function To enforce the distance of matched image-
text pairs to be closer than mismatched ones, we use triplet
ranking loss (Li et al. 2019) in both fragment-level embed-
ding space and action-aware embedding space. Following
(Faghri et al. 2018), we employ the hardest negatives, i.e.,
the negatives closest to each training query. For a positive
pair (t,i), we can find the hardest negative image î and the
hardest negative text t̂. Then, the triplet loss is defined as

Ltri(i, t) =[β − S(i, t) + S(i, t̂)]+

+[β − S(i, t) + S(̂i, t)]+, (4)

where β serves as a margin parameter and [x]+=max(x, 0).
S(·, ·) stands for cosine similarity. For computational effi-
ciency, rather than selecting the hardest negatives in entire
training set, we use the hardest one in each mini-batch.

Considering that each image and text usually contains
multiple action tags, we treat action prediction for each ac-
tion tag as an independent binary classification task:

Lbce(m, m̄) = −
nmt∑
k=1

(m̄k log(mk)+

(1− m̄k) log(1−mk)), (5)

where nmt is the size of all action tags, m̄ is the ground-truth
binary label vector for nmt action tags, m̄k (resp.,mk) is the
k-th entry of m̄ (resp., m). Note that we omit the supercripts
for m̄k and mk here.

In summary, the final training objective is defined as:

L = λ1Ltri(i
m, tm)

+λ2(Lbce(m
i,e, m̄i) + Lbce(m

t,e, m̄t)), (6)

where λ1 and λ2 aim to balance different loss terms.

Retrieval During retrieval, we concatenate the action-
aware embeddings with the action scores together as the fi-
nal embedding:

ic = [im,mi,e], tc = [tm,mt,e], (7)

where [·, ·] represents the concatenation of two vectors.

4 Experiment
4.1 Dataset and Evaluation Metrics
Dataset We evaluate our AME method and all the other
baselines on two large-scale benchmark datasets: Flickr30K
(Young et al. 2014) and Microsoft COCO (Lin et al. 2014).

Flickr30K (Young et al. 2014) consists of 31,000 images
from the Flickr website. Each image is associated with five
human annotated texts. We follow the split in (Lee et al.
2018), by using 1,000 images for validation, 1,000 images
for testing, and 29,000 images for training.

Microsoft COCO (Lin et al. 2014) originally consists of
82,783 training images and 40,504 validation images, and
each image is annotated with five texts. Following the split
in (Lee et al. 2018), we select 5,000 validation images and
5,000 test images from the original validation set and then
add the rest 30,504 images into training set. The test results
are reported for averaging over five folds of 1K test images
(Li et al. 2019).

Evaluation Metrics Specifically, we adopt Recall at K
(R@K) to measure the performance of the bi-directional re-
trieval, i.e., retrieving texts given an image (Text Retrieval)
and retrieving images given a text (Image Retrieval). We re-
port R@1, R@5, and R@10 on both datasets. We also re-
port the “mR” criterion, the average of all six recall rates of
R@K, which provides a more comprehensive evaluation to
testify the performance.

4.2 Comparison with Existing Methods
To justify the effectiveness of our proposed method, we
compared it with fourteen prior methods on Flickr30, Mi-
crosoft COCO (1K), and Microsoft COCO (5K), which in-
clude five embedding learning models and nine pair-wise



Learning
Paradigm Method

Flickr30 Microsoft COCO (1K)
Text Retrieval Image Retrieval mR Text Retrieval Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Pair-wise
Learning

CAMP 68.1 89.7 95.2 51.5 77.1 85.3 77.8 72.3 94.8 98.3 58.5 87.9 95.0 84.4
PFAN∗ 70.0 91.8 95.0 50.4 78.7 86.1 78.7 76.5 96.3 99.0 61.6 89.6 95.2 86.4

DP-RNN 70.2 91.6 95.8 55.5 81.3 88.2 80.5 75.3 95.8 98.6 62.5 89.7 95.1 86.2
IMRAM 74.1 93.0 96.6 53.9 79.4 87.2 80.7 76.7 95.6 98.5 61.7 89.1 95.0 86.1
GSNM∗ 76.4 94.3 97.3 57.4 82.3 89.0 82.8 78.4 96.4 98.6 63.3 90.1 95.7 87.1
ADAPT∗ 76.6 95.4 97.6 60.7 86.6 92.0 84.8 76.5 95.6 98.9 62.2 90.5 96.0 86.6
DIME∗† 81.0 95.9 98.4 63.6 88.1 93.0 86.7 78.8 96.3 98.7 64.8 91.5 96.5 87.8

Embedding
Learning

SAEM† 69.1 91.0 95.1 52.4 81.1 88.1 79.5 71.2 94.1 97.7 57.8 88.6 94.9 84.0
VSRN∗ 71.3 90.6 96.0 54.7 81.8 88.2 80.4 76.2 94.8 98.2 62.8 89.7 95.1 86.1
CVSE 73.5 92.1 95.8 52.9 80.4 87.8 80.4 74.8 95.1 98.2 59.9 89.4 95.2 85.5

CAMERA∗† 78.0 95.1 97.9 60.3 85.9 91.7 84.8 77.5 96.3 98.8 63.4 90.9 95.8 87.1
AME 74.9 93.5 97.0 58.9 84.7 90.2 83.2 77.1 95.4 98.3 62.8 89.4 95.1 86.4
AME∗ 77.1 95.1 97.3 61.2 86.1 91.5 84.7 78.5 96.1 98.7 63.7 90.1 95.6 87.1
AME† 78.4 95.4 97.8 62.1 86.8 91.9 85.4 78.6 96.0 98.6 64.2 90.3 95.7 87.2
AME∗† 81.9 95.9 98.5 64.6 88.7 93.2 87.1 79.4 96.7 98.9 65.4 91.2 96.1 87.9

Table 2: Comparison with existing models on Flickr30K and Microsoft COCO (1K). The symbol ‘∗’ refers to the ensemble
result and the symbol ‘†’ refers to the pre-trained BERT text embedding. The state-of-the-art results are highlighted in bold.

Learning
Paradigm Method

Microsoft COCO (5K)
Text Retrieval Image Retrieval mRR@1 R@5 R@10 R@1 R@5 R@10

Pair-wise
Learning

CAMP 50.1 82.1 89.7 39.0 68.9 80.2 68.3
IMRAM 53.7 83.2 91.0 39.6 69.1 79.8 69.4
DIME∗† 59.3 85.4 91.9 43.1 73.0 83.1 72.6

Embedding
Learning

VSRN∗ 53.0 81.1 89.4 40.5 70.6 81.1 69.3
CAMERA∗† 55.1 82.9 91.2 40.5 71.7 82.5 70.6

AME 54.0 82.1 90.7 40.1 70.2 80.5 69.6
AME∗ 56.4 83.8 91.7 41.5 71.1 81.4 71.0
AME† 57.1 83.5 91.6 42.2 71.7 82.0 71.3
AME∗† 59.9 85.2 92.3 43.6 72.6 82.7 72.7

Table 3: Comparison with existing models on Microsoft
COCO (5K). The symbol ‘∗’ refers to the ensemble result
and the symbol ‘†’ refers to the pre-trained BERT text em-
bedding. The state-of-the-art results are highlighted in bold.

learning models. For embedding learning models, we com-
pare with VSRN (Li et al. 2019), SAEM (Wu et al. 2019),
CVSE (Wang et al. 2020a), and CAMERA (Qu et al. 2020),
where CVSE (Wang et al. 2020a) adopted a huge knowledge
base for cross-modal representation. For pair-wise learning
models, we compare with CAMP (Wang et al. 2019c), PFAN
(Wang et al. 2019b), DP-RNN (Chen and Luo 2020), IM-
RAM (Chen et al. 2020a), GSNM (Liu et al. 2020), ADAPT
(Wehrmann, Kolling, and Barros 2020), and DIME (Qu et al.
2021), where GSNM adopted extra semantic information
to build sparse text graph. All the methods applied Faster-
RCNN (Ren et al. 2015) to extract image region features.
For fair comparison, we further divide the experiment set-
ting into four different conditions based on the initialization
of text embedding and whether using ensemble models.

The performance on Flickr30K and Microsoft COCO
(1K) are shown in Table 2 and the performance on Microsoft
COCO (5K) are shown in Table 3, where our AME method
outperforms all the existing methods on corresponding con-
ditions in terms of text retrieval (R@1) and image retrieval
(R@1). Compared with the embedding learning methods,
our proposed AME method outperforms them by a large

margin. Specifically, the performance gain of our method
(AME∗†) over CAMERA∗† is 3.9%, 1.9% and 4.7% (resp.,
4.3%, 2.0% and 3.0%) on Flickr30K, Microsoft COCO (1K)
and Microsoft COCO (5K) in terms of text retrieval (resp.,
image retrieval) R@1. Compared with the pair-wise learning
methods, our proposed AME method can still gain improve-
ment in all R@1, which indicates that the proposed memory-
bank can enhance the embedding with action-aware cross-
modal information. Note that the improvement of our AME∗†
over DIME∗† is not quite large, however, the pair-wise
learning paradigm make the inference speed of the DIME
much slower than our proposed AME method. (Time anal-
ysis between embedding learning and pair-wise learning
paradigm can be found in Supplementary.)

Regarding the performance on different datasets, we can
find that on Flickr30K, the gain from the model ensemble
and pre-trained BERT text embedding is more significant
than that in Microsoft COCO (1K). We conjecture that im-
ages in Microsoft COCO have much large training set which
compromises the enhancement from both model ensemble
and pre-trained BERT text embedding. Moreover, by com-
paring the improvement of our method on both datasets, we
can also find that the improvement on Flickr30K is more sig-
nificant. We suspect that images in Microsoft COCO have
fewer objects and simpler relation, which compromises the
enhancement from fine-grained alignment and fusion.

4.3 Ablation Study
By taking Flickr30K as an example, we analyze the impact
of memory bank, action score, action tag candidate size nm,
and memory response size nr. Text retrieval R@1, image
retrieval R@1, and “mR” under single model and random
initialized text embedding are reported in this section. More
analyses of hyper-parameters and transformer encoders can
be found in Supplementary.

Effect of Memory Banks and Action score As shown in
Table 4, we can find that the memory bank is essential to
the performance (row 1 v.s. row 3), without which the per-
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Figure 3: The visualization of action tag candidates (Mi and Mt) and memory response texts (Ri and Rt) (see Sec. 3.2
Memory Search). The words corresponding to action tags are highlighted in red.

Figure 4: The variance of text retrieval R@1 (left) and image
retrieval R@1 (right) in our method with different action tag
candidate sizes and memory response sizes.

formances drop 4.8 % and 4.6 % in terms of text retrieval
and image retrieval R@1. Besides, the action score is also
very helpful (row 1 v.s. row2), which indicates that action
score is valuable for complementing the action information
in embedding representation. Further, if we remove both the
action score and the memory bank, the performance of our
model is worse than most of recent methods, which also im-
plies that the performance gain is mainly from the action
score and the action-aware memory bank.

Effect of Action Tag Candidate Size and Memory Re-
sponse Size We fix the memory response size nr and ac-
tion tag candidate size nm as 5 in turn, and change the other
one in the range of [1, 10] to plot the performance vari-
ance in Figure 4. As the action tag candidate size increases,
the model performance on both evaluation metrics first in-
creases and then decreases. This might be because when
the action tag candidate size is large, more irrelevant action
tags would also be selected as predicted actions, which de-
grades the quality of action-aware embeddings. Whereas, as
the memory response size increases, the model performance
first increases and then becomes stable, which indicates that
the quality of action-aware embedding will get stable when
the number of action-similar texts is large enough. To bal-
ance the retrieval efficiency and performance, we choose 5
as the action tag candidate size.

Action Score Memory Bank R@1(T) R@1(I) mR
1 X X 74.9 58.9 83.2
2 × X 73.8 58.2 82.4
3 X × 70.1 54.3 80.1
4 × × 69.2 52.9 79.1

Table 4: The ablation study of action score and memory
bank. X (resp.,×) means adding (resp., removing) the mem-
ory bank or the action score. T and I are short for text and im-
age retrieval, respecticvely. When memory bank is removed,
the triplet loss in Eqn. 6 is employed to ie and te.

4.4 Visualization of Action Tags and Memory
Response Texts

In Figure 3, we visualize the confidence score of action can-
didates (Mi andMt) in a decreasing order. We also show
memory response texts (Ri and Rt). For query texts, the
predicted action tags are mainly the verb phrases appearing
in the text and their synonyms. For query images, the pre-
dicted action tags contain the potential actions from different
aspect, like “hold” and “hold up” from the hand over racket
and the “stand” and “stand by” from the foot over ground.
Besides, we also observe that the memory response texts in-
clude some noise. However, as mentioned in Sec. 3.2, the
transformer encoder Em can prevent the noise in memory
response features from being directly introduced to action-
aware embeddings. More visualization and analyses of re-
trieval cases can be found in Supplementary.

5 Conclusion
In this paper, we have studied image-text retrieval from a
new viewpoint, i.e., enhancing embedding representation
via action-aware information. We have proposed a novel
method for action-aware embedding enhancement, with re-
trieval performed in both fragment-level embedding space
and action-aware embedding space. Comprehensive experi-
ments on two large-scale benchmark datasets have demon-
strated that our method significantly outperforms the state-
of-the-art approaches.



Acknowledgement
This work was supported by the NSF of China (Grant No.
62076162), the Shanghai Municipal Science and Technol-
ogy Major Project (Grant No. 2021SHZDZX0102), and
Shanghai Municipal Science and Technology Key Project (
Grant No. 20511100300). We thank Wu Wen Jun Honorary
Doctoral Scholarship, AI Institute, Shanghai Jiao Tong Uni-
versity.

References
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould,
S.; and Zhang, L. 2018. Bottom-up and Top-down attention for
image captioning and visual question answering. In CVPR.
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.;
Lawrence Zitnick, C.; and Parikh, D. 2015. VQA: Visual question
answering. In ICCV.
Chen, H.; Ding, G.; Lin, Z.; Zhao, S.; and Han, J. 2019. Cross-
modal image-text retrieval with semantic consistency. In ACM
MM.
Chen, H.; Ding, G.; Liu, X.; Lin, Z.; Liu, J.; and Han, J. 2020a.
IMRAM: Iterative matching with recurrent attention memory for
cross-modal image-text retrieval. In CVPR.
Chen, T.; and Luo, J. 2020. Expressing objects just like words:
Recurrent visual embedding for image-text matching. In AAAI.
Chen, Y.; Cao, Y.; Hu, H.; and Wang, L. 2020b. Memory enhanced
global-local aggregation for video object detection. In CVPR.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empirical
evaluation of gated recurrent neural networks on sequence model-
ing. In NeurIPS Workshop.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT:
Pre-training of deep bidirectional transformers for language under-
standing. In NAACL.
Faghri, F.; Fleet, D. J.; Kiros, J. R.; and Fidler, S. 2018. VSE++:
Improving visual-semantic embeddings with hard negatives. In
BMVC.
Frome, A.; Corrado, G. S.; Shlens, J.; Bengio, S.; Dean, J.; Ran-
zato, M.; and Mikolov, T. 2013. DeViSE: A deep visual-semantic
embedding model. In NeurIPS.
Gu, J.; Cai, J.; Joty, S. R.; Niu, L.; and Wang, G. 2018. Look,
imagine and match: Improving textual-visual cross-modal retrieval
with generative models. In CVPR.
Huang, Y.; and Wang, L. 2019. ACMM: Aligned Cross-Modal
Memory for Few-Shot Image and Sentence Matching. In ICCV.
Huang, Y.; Wang, W.; and Wang, L. 2017. Instance-aware image
and sentence matching with selective multimodal LSTM. In CVPR.
Ji, Z.; Lin, Z.; Wang, H.; and He, Y. 2020. Multi-modal memory
enhancement attention network for image-text matching. IEEE Ac-
cess, 8: 38438–38447.
Karpathy, A.; Joulin, A.; and Fei-Fei, L. 2014. Deep fragment em-
beddings for bidirectional image sentence mapping. In NeurIPS.
Kiros, R.; Salakhutdinov, R.; and Zemel, R. S. 2014. Unify-
ing visual-semantic embeddings with multimodal neural language
models. In NeurIPS.
Lee, K.-H.; Chen, X.; Hua, G.; Hu, H.; and He, X. 2018. Stacked
cross attention for image-text matching. In ECCV.
Li, J.; Liu, L.; Niu, L.; and Zhang, L. 2021. Memorize, Associate
and Match: Embedding Enhancement via Fine-Grained Alignment
for Image-Text Retrieval. IEEE Transactions on Image Processing,
30: 9193–9207.

Li, K.; Zhang, Y.; Li, K.; Li, Y.; and Fu, Y. 2019. Visual semantic
reasoning for image-text matching. In ICCV.
Li, S.; Xiao, T.; Li, H.; Yang, W.; and Wang, X. 2017. Identity-
aware textual-visual matching with latent co-attention. In ICCV.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan,
D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft COCO: Common
objects in context. In ECCV.
Liu, C.; Mao, Z.; Liu, A.-A.; Zhang, T.; Wang, B.; and Zhang, Y.
2019. Focus your attention: A bidirectional focal attention network
for image-text matching. In ACM MM.
Liu, C.; Mao, Z.; Zhang, T.; Xie, H.; Wang, B.; and Zhang, Y. 2020.
Graph structured network for image-text matching. In CVPR.
Ma, L.; Lu, Z.; Shang, L.; and Li, H. 2015. Multimodal convolu-
tional neural networks for matching image and sentence. In Pro-
ceedings of the IEEE international conference on computer vision,
2623–2631.
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J. R.; Bethard, S.;
and McClosky, D. 2014. The Stanford CoreNLP natural language
processing toolkit. In ACL System Demonstrations.
Miller, A.; Fisch, A.; Dodge, J.; Karimi, A.-H.; Bordes, A.; and
Weston, J. 2016. Key-value memory networks for directly reading
documents. In EMNLP.
Nam, H.; Ha, J.-W.; and Kim, J. 2017. Dual attention networks for
multimodal reasoning and matching. In CVPR.
Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; and Hua, G. 2017. Hierar-
chical multimodal LSTM for dense visual-semantic embedding. In
ICCV.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP.
Qu, L.; Liu, M.; Cao, D.; Nie, L.; and Tian, Q. 2020. Context-
Aware Multi-View Summarization Network for Image-Text Match-
ing. In ACM MM.
Qu, L.; Liu, M.; Wu, J.; Gao, Z.; and Nie, L. 2021. Dynamic
Modality Interaction Modeling for Image-Text Retrieval. In SIGIR.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks.
In NeurIPS.
Song, G.; Wang, D.; and Tan, X. 2018. Deep memory network for
cross-modal retrieval. IEEE Transactions on Multimedia, 21(5):
1261–1275.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is
all you need. In NeurIPS.
Vendrov, I.; Kiros, R.; Fidler, S.; and Urtasun, R. 2016. Order-
embeddings of images and language. In ICLR.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015. Show and
tell: A neural image caption generator. In CVPR.
Wang, H.; Zhang, Y.; Ji, Z.; Pang, Y.; and Ma, L. 2020a.
Consensus-Aware Visual-Semantic Embedding for Image-Text
Matching. In ECCV.
Wang, L.; Li, Y.; and Lazebnik, S. 2016. Learning deep structure-
preserving image-text embeddings. In CVPR.
Wang, M.; Lu, Z.; Li, H.; and Liu, Q. 2016. Memory-enhanced
decoder for neural machine translation. In EMNLP.
Wang, S.; Chen, Y.; Zhuo, J.; Huang, Q.; and Tian, Q. 2018. Joint
global and co-attentive representation learning for image-sentence
retrieval. In ACM MM.
Wang, S.; Wang, R.; Yao, Z.; Shan, S.; and Chen, X. 2020b. Cross-
modal scene graph matching for relationship-aware image-text re-
trieval. In WACV.



Wang, T.; Xu, X.; Yang, Y.; Hanjalic, A.; Shen, H. T.; and Song, J.
2019a. Matching images and text with multi-modal tensor fusion
and re-ranking. In ACM MM.
Wang, Y.; Yang, H.; Qian, X.; Ma, L.; Lu, J.; Li, B.; and Fan, X.
2019b. Position focused attention network for image-text match-
ing. In AAAI.
Wang, Z.; Liu, X.; Li, H.; Sheng, L.; Yan, J.; Wang, X.; and Shao,
J. 2019c. CAMP: Cross-modal adaptive message passing for text-
image retrieval. In ICCV.
Wehrmann, J.; Kolling, C.; and Barros, R. C. 2020. Adaptive
Cross-Modal Embeddings for Image-Text Alignment. In AAAI.
Wei, X.; Zhang, T.; Li, Y.; Zhang, Y.; and Wu, F. 2020. Multi-
Modality Cross Attention Network for Image and Sentence Match-
ing. In CVPR.
Weikuo, G.; Huang, H.; Kong, X.; and He, R. 2019. Learning dis-
entangled representation for cross-modal retrieval with deep mu-
tual information estimation. In ACM MM.
Weston, J.; Chopra, S.; and Bordes, A. 2014. Memory networks.
arXiv:1410.3916.
Wu, Y.; Wang, S.; and Huang, Q. 2017. Online asymmetric simi-
larity learning for cross-modal retrieval. In CVPR.
Wu, Y.; Wang, S.; Song, G.; and Huang, Q. 2019. Learning frag-
ment self-attention embeddings for image-text matching. In ACM
MM.
Young, P.; Lai, A.; Hodosh, M.; and Hockenmaier, J. 2014. From
image descriptions to visual denotations: New similarity metrics
for semantic inference over event descriptions. Transactions of the
Association for Computational Linguistics (TACL), 2: 67–78.
Zellers, R.; Bisk, Y.; Farhadi, A.; and Choi, Y. 2019. From recog-
nition to cognition: Visual commonsense reasoning. In CVPR.
Zhang, Y.; and Lu, H. 2018. Deep cross-modal projection learning
for image-text matching. In ECCV.


