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ABSTRACT
Currently, video semantic segmentation mainly faces two chal-
lenges: 1) the demand of temporal consistency; 2) the balance be-
tween segmentation accuracy and inference eciency. For the rst
challenge, existing methods usually use optical ow to capture the
temporal relation in consecutive frames and maintain the temporal
consistency, but the low inference speed by means of optical ow
limits the real-time applications. For the second challenge, ow-
based key frame warping is one mainstream solution. However,
the unbalanced inference latency of ow-based key frame warp-
ing makes it unsatisfactory for real-time applications. Considering
the segmentation accuracy and inference eciency, we propose
a novel Sparse Temporal Transformer (STT) to bridge temporal
relation among video frames adaptively, which is also equipped
with query selection and key selection. The key selection and query
selection strategies are separately applied to lter out temporal and
spatial redundancy in our temporal transformer. Specically, our
STT can reduce the time complexity of temporal transformer by
a large margin without harming the segmentation accuracy and
temporal consistency. Experiments on two benchmark datasets,
Cityscapes and Camvid, demonstrate that our method achieves the
state-of-the-art segmentation accuracy and temporal consistency
with comparable inference speed.

CCS CONCEPTS
• Computing methodologies → Video segmentation.
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1 INTRODUCTION
Video semantic segmentation (VSS) aims to assign a semantic label
to each pixel in video frames. As an important research topic for ap-
plications such as autonomous driving and robotics, it has attracted
widespread attention in the research community [15, 20, 25, 28, 36,
37, 40]. Whereas, VSS is quite challenging due to two reasons: 1)
since the consecutive annotation does not exist in current datasets,
the models need to perform temporally consistent semantic segmen-
tation in a semi-supervised manner. 2) for real-time applications,
the models have to balance segmentation accuracy and inference
eciency.

For temporally consistent semantic segmentation, the method
should be capable of aligning the prediction between consecutive
frames. Therefore, one feasible solution is estimating frame-to-
frame motion warping (e.g., optical ow) to segment consecutive
frames, like NetWarp [20] and GRFP [40]. However, the inference of
optical ow is time-consuming, making these methods unsuitable
for real-time applications. To utilize the optical owmore eciently,
ETC [37] adopted warped prediction loss to constrain the predic-
tion of current frame during training and performed single-frame
prediction during inference. Nevertheless, the usage of optical ow
in ETC [37] is aected by estimation errors caused by occlusions,
non-textured regions, and large motions, which might be harmful
for the segmentation model. Besides, only counting on the current
frame during inference also limits its temporal consistency.

To balance the segmentation accuracy and inference eciency,
existing methods can be divided into two groups. On the one hand,
some methods employ large models towards the key frames, and
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propagate to non-key frames using optical ows [50, 59, 61] or
utilize small model to process the non-key frames [28]. However,
such methods have two drawbacks: 1) optical ow models become
more and more complicated, so the inference speed is compromised;
2) it requires dierent inference time for dierent frames, which
causes unbalanced latency and limits its practical usage. On the
other hand, some methods adopt knowledge distillation from large
model towards small model [25, 37], which aims to improve the
segmentation eciency without increasing the computational cost.
Nevertheless, since the model capacity of small model does not
change, the improvement from the large model is also limited (+0.4
% mIoU in TDNet [25] and +0.47% mIoU in ETC [37]).

To achieve temporally consistent semantic segmentation with-
out the favor of optical ow, the key is to align the corresponding
semantic objects adaptively. Transformer [46], which has achieved
great success in natural language processing (NLP) [13, 14] and
computer vision (CV) [3, 4, 16], is capable of correlating the similar
features with multi-head attention. Therefore, we propose to incor-
porate a temporal transformer into existing segmentation models
as an adaptive module to capture the temporal relation among con-
secutive frames. According to the denition of query/key/value
in transformer, the current frame is regarded as query frame and
several previous frames are regarded as key/value frames. In de-
tail, given a video clip with several frames, we rst employ the
encoder of image segmentation model (e.g., PSPNet [56]) to encode
each frame into feature maps. The feature map of current frame
is treated as the query feature map and the feature maps of previ-
ous frames are treated as key/value feature maps. The output of
temporal transformer, which shares the same shape as the query
feature map, will be sent to the decoder of segmentation model.
Note that the encoded features of previous frames can be reused
in the inference steps for later frames, which will not introduce
extra computation for encoding key frames and can also keep bal-
anced latency. However, for a video containing several frames with
high-resolution, the time complexity of the interaction between
query feature map and key/value feature maps is extremely high
and intolerable in the vanilla temporal transformer.

To make a trade-o between segmentation accuracy and infer-
ence eciency, we further propose two selection strategies (i.e.,
query selection and key selection) to reduce the time complexity of
temporal transformer. Because key feature map and value feature
map are identical in our temporal transformer, we only mention the
operation to key feature map in the remainder of this section for
brevity. In Figure 1 (a), we show two frames and their corresponding
semantic labels, where the regions enclosed in orange (resp., blue)
boxes contain a single (resp. multiple) semantic object(s). Following
Marin et al. [39], we divide the regions in the frames into simple
regions and complex regions, where the complex regions usually
contain multiple semantic categories and the simple regions only
contain single semantic category. For complex regions, capturing
the temporal relation would be helpful to improve the segmentation
accuracy and temporal consistency. Instead, enriching the simple
regions with temporal information may not bring much dierence.
Therefore, we propose Neighboring Similarity Matrix (NSM) com-
bining cosine distance and Kullback–Leibler (KL) divergence to
select the complex regions from the query frame, which is dubbed
as query selection. Besides, in Figure 1 (b), we show ve consecutive

frames, where the rst four frames are the key frames and the last
frame is the query frame. For the rst example, if we want to track
the person or bike (enclosed in green box) in the key frame, it is a
waste to search the whole region in key frames, whereas, enlarging
the searching region (enclosed in red box) in a proper scale would
be wiser. Therefore, for each query point in the query frame, we
rst select a small region in the nearest key frame as the key re-
gion. Then we gradually enlarge the radius of key region from the
nearest key frame to the farthest key frame, which is dubbed as
key selection. Based on the above two selection strategies, the time
complexity of temporal transformer can be reduced from𝑂 (𝑇ℎ2𝑤2)
to 𝑂 (𝑇ℎ𝑤), in which ℎ and 𝑤 represent the height and width of
the feature maps and 𝑇 represents the number of key frames. We
notice that TDNet [25] also applied attention module to capture
the temporal relation, but TDNet can only focus on the nearest one
or three frame(s), which may impede capturing temporal relation
in a longer range. We integrate query selection and key selection
into our temporal transformer, leading to a novel Sparse Temporal
Transformer (STT) for video semantic segmentation, which can
not only capture the temporal relation to maintain the temporal
consistency but also balance the segmentation accuracy and infer-
ence eciency in a good manner. It is worth noting that our STT
is a plug-in module which can be incorporated into a wide range
of semantic segmentation models.

We conduct extensive experiments on two benchmark datasets,
Cityscapes [11] and Camvid [2], which show that our method
achieves signicant improvement for temporal consistency and
segmentation accuracy. Further analyses on our query selection
and key selection also show that our proposed selection strategies
could locate the boundary region and align the semantic objects
adaptively. Our contributions can be summarized as:

• We incorporate the transformer architecture into the image
semantic segmentation model to capture temporal relation
for video semantic segmentation task.

• We propose a novel Sparse Temporal Transformer (STT)
module with key selection and query selection to balance
the segmentation accuracy and inference eciency in a good
manner. Our proposed selection strategies can reduce the
time complexity by a large margin without harming the
segmentation accuracy and temporal consistency.

• Extensive experiments on two video semantic segmenta-
tion datasets, i.e. Cityscapes and Camvid, demonstrate the
eectiveness of our method.

2 RELATEDWORK
2.1 Image Semantic Segmentation
Image semantic segmentation [5, 21, 22, 29, 31, 32, 35, 41, 55] is
the foundation of video semantic segmentation. The success of
deep learning brought signicant improvement to image semantic
segmentation. Since Long et al. [38] rst proposed a fully convolu-
tional network (FCN) to segment images, deep convolution neural
networks become the mainstream solution to semantic segmenta-
tion. Following FCN, recent researches proposed various schemes
for ecient segmentation or high-accuracy segmentation. In [5–
7, 54], dilated convolutions were used to enlarge receptive eld.
By means of stronger backbone networks like GoogleNets [45],
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Figure 1: (a) Illustration of query selection. The simple (resp., complex) regions enclosed in orange (resp., blue) boxes contain a
single semantic label (resp., multiple semantic labels). We attempt to select the complex regions as queries. (b) Illustration of
key selection. Given an object (enclosed in green boxes) in the query frame, to track this object in the key frames, we enlarge
the searching region (enclosed in red boxes) from near frame to far frame, in which the searching regions form our selected
key regions. Best viewed by zooming in.

ResNets [23], and DenseNets [26] or light-weight backbone net-
works like MobileNet [24] and BiSeNet [53], better segmentation
performance or ecient segmentation can be achieved. To exploit
multi-scale context, SegNet [1], Unet [43] and ReneNet [34] used
auto-encoder architecture with skip connection to fuse low-level
features with high-level features. PSPNet [56] and DeepLab [6]
proposed PPM (Pyramid Pooling Module) and ASPP (Atrous Spa-
tial Pyramid Pooling) to integrate multi-scale context for compre-
hensive scene understanding, respectively. HRNet [47] repeatedly
aggregated features from four parallel branches with dierent res-
olutions. More recently, to aggregate global context, transformer
based method SETR [57] was proposed to capture long range de-
pendencies from image.

2.2 Video Semantic Segmentation
Unlike image semantic segmentation, video semantic segmenta-
tion (VSS) aims at labeling all frames in a video sequence which is
sparsely labeled. The challenge for VSS is to keep a balance in ex-
ploiting the temporal information (accuracy) and reducing the com-
putational cost (eciency). Besides, maintaining temporal consis-
tency in adjacent frames is also essential in VSS. To solve these chal-
lenges, existing methods can be mainly divided into two categories.
The rst category [15, 18, 20, 30, 36, 40] concentrates on improv-
ing the segmentation accuracy by mining extra information from
neighboring unlabeled frames in the video sequence. NetWarp [20]
and SVP [36] utilized optical ow to warp features from previ-
ous frame to current frame and combine both features to enhance
the segmentation accuracy. GRFP [40] proposed a STGRU module
which combined optical ow and gated recurrent units (GRU) to
fuse spatial and temporal features. EFC [15] jointly trained a VSS
and optical ow estimation network to make the two tasks promote
each other.

The second category [19, 25, 28, 33, 37, 39, 44, 50, 61] focuses on
ecient video segmentation by re-using the feature maps in the

neighboring frames. Accel [28] further warped key frame features
extracted from a large model, which are combined with shallow
features from non-key frame to evaluate the nal results. Dier-
ent from key frame selection methods, Marin et al. [39] proposed
adaptive key region selection method to promote the segmentation
accuracy on small objects and semantic boundaries. TDNet [25]
utilized shallow sub-network to encode high-level features from
dierent frames and merged them with an attention module to
realize lightweight computation. Inspired by knowledge distilla-
tion, ETC [37] distilled a compact segmentation model from a large
model. Although these methods took a series of strategies to design
an ecient model, there still exists costly overhead when calcu-
lating optical ow for ow-based methods and the promotion is
limited for distill-based methods. In contrast to the above methods,
we introduce a transformer-based method into VSS and propose
an ecient transformer architecture to replace the optical ow, in
which both eciency and high accuracy can be achieved.

2.3 Transformer
Transformer, which is mainly based on self-attention mechanism
[46], has brought astounding promotions to NLP [12–14, 52]. The
breakthrough transformer-based models made in NLP has also at-
tracted considerable interest from CV community. Recently, a num-
ber of researchers adapted transformer structure to extensive CV
tasks (e.g., object detection [3, 60], image classication [8, 16, 49],
image generation and enhancement [4, 10, 42, 51], segmentation [48,
57]). Owing to strong representation capabilities and the reliance
on few inductive biases, transformer-based vision networks have ac-
quired remarkable performance and become a viable alternative to
convolutional neural network (CNN). Although transformer models
succeed in various tasks, their high requirements for memory and
computing resources block them for real-time applications or time-
consuming tasks (e.g., video processing tasks). To adapt transformer
to satisfy these requirements, SSTVOS [17] proposed grid attention
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module and strided attention based on criss-cross attention [27]
to relieve the computational burden on video object segmentation.
Informer [58] leveraged a sparse self-attention mechanism to make
ecient time-series forecasting. TransT [9] proposed an ecient
attention-based feature fusion module in video object tracking
which meets the real-time requirement. Nevertheless, there are no
studies explore the usage of transformer for VSS applications (e.g.,
automatic driving) which require real-time processing and high
segmentation accuracy. In this paper, we proposed a STT method
tailored for VSS. Our method can achieve state-of-the-art (SOTA)
segmentation accuracy with low latency.

3 METHODOLOGY
In this section, we introduce our proposed Sparse Temporal Trans-
former (STT) for video semantic segmentation (VSS). In Section 3.1,
we introduce the problem denition and the framework from a
general point of view. In Section 3.2, we elaborate our proposed
key selection strategy, query selection strategy, and temporal trans-
former model. In the remainder of this paper, we use regular letters
to represent scalar and bold letters to represent vector, matrix and
tensor.

3.1 Problem Denition and Framework
Overview

In this paper, we focus on VSS, which aims to assign the semantic
labels to each pixel of all frames. Apart from the segmentation
accuracy, VSS also requires the segmentation results to be consis-
tent between consecutive frames, which is also known as temporal
consistency. Besides, VSS is also a semi-supervised task, where we
only have sparse annotations (about 1 frame annotation every 30
frames) from current datasets, like Cityscapes [11] and Camvid [2].
Formally, given a video segmentation dataset S = {(X, y)}, where
X ∈ R(𝑇+1)×𝐻×𝑊 ×3 is a piece of video with 𝐻 ,𝑊 , and 𝑇 + 1 being
height, width, and temporal length respectively. The last frame
in video X is the only frame that has annotated semantic labels
y ∈ R𝐻×𝑊 ×𝑐 , in which 𝑐 is the total number of semantic cate-
gories. During testing, we need to predict the semantic labels for
all frames in each video and evaluate the results from two aspects,
i.e., segmentation accuracy (mIoU) and temporal consistency [37].

An overall owchart of our method is illustrated in Figure 2. The
input of our method is a video clip containing 𝑇 + 1 frames, where
the last frame (F𝑇+1) is the target frame for semantic label prediction
and the previous frames (F1 to F𝑇 ) will be used by our temporal
transformer to enhance the temporal relation. During training, the
previous frames (F1 to F𝑇 ) will provide semantic information for the
last frame (F𝑇+1) through our temporal transformer and the overall
model will also be optimized by all these frames. In the inference
stage, all the frames only need to be encoded once and the high-
level features can be reused by our our temporal transformer, which
prevents the redundant computation and guarantees that semantic
segmentation can be done in parallel.

Specically, our network consists of the following three parts, the
shared encoder, the STT, and the segmentation decoder. The shared
encoder and the segmentation decoder are the fundamental parts
of an image segmentation model, which aim to capture the informa-
tion within each frame and predict the semantic labels respectively.

Specically, we split the existing segmentation model (e.g., PSP-
Net [56] or BiSeNet [53]) into encoder and decoder, and then we
plug our STT between them, where the STT is proposed to capture
temporal related information.

Considering that the time complexity of transformer architec-
ture is extremely high, we design two ecient selection strategies
towards the query frame (F𝑇+1) and key frames (F1 to F𝑇 ) of the
temporal transformer to simplify the computation. These two se-
lection strategies are capable of reducing the time complexity of
our temporal transformer by a large margin without harming the
performance of segmentation model (A detailed analysis will be
found in Sec. 4.3.1 and Sec. 4.3.2). In the following section, we will
detail our STT about the key selection, the query selection, and the
temporal transformer.

3.2 Sparse Temporal Transformer
Before introducing the Sparse Temporal Transformer (STT), we
rst dene the variables. The feature maps of previous frames are
dened as key feature maps K ∈ R𝑇×ℎ×𝑤×𝑑𝑡 and the feature map
of current frame is dened as query feature map Q ∈ Rℎ×𝑤×𝑑𝑡 ,
where the 𝑇 is the number of previous frames, ℎ and𝑤 represents
the height and width of feature maps, and 𝑑𝑡 is the channel size.

3.2.1 ery Selection. Motivated by Marin et al. [39] which aims
to enhance the representation of semantic boundaries region by
content-adaptive downsampling, we also divide the feature map of
current frame into simple regions and complex regions. The simple
regions mean the regions with monotonous semantic labels, like the
red boxes in Figure 1 (a); whereas, the complex regions usually con-
tain multiple semantic objects or contain the boundaries between
dierent semantic objects, like the blue boxes in Figure 1 (a). In ex-
periments (details can be found in Sec. 3.2.1), we nd that complex
regions contribute more than simple regions to the segmentation
accuracy and temporal consistency. To make a trade-o between
accuracy and speed, we decide to enhance the segmentation results
through temporal transformer while only focusing on relatively
complex regions. As we stated previously, the simple regions usu-
ally contain unique semantic labels and the complex regions usually
contain dierent semantic labels. To identify complex regions, we
propose a novel metric named Neighboring Similarity Matrix (NSM)
combining cosine distance and KL divergence to distinguish simple
and complex regions in query feature map Q.

Given a neighborhood radius 𝑟 , a coordinate (𝑢, 𝑣) and a query
feature mapQ ∈ Rℎ×𝑤×𝑑𝑡 , we can get a feature point q = Q[u] [v] ∈
R1×𝑑𝑡 and its corresponding neighborhoodQn = Q[u−r:u+r] [v−r:v+r]
based on the coordinate (𝑢, 𝑣), then we atten the neighborhood
into a 2D feature matrix Qn ∈ R𝑛𝑏×𝑑𝑡 , where 𝑛𝑏 = (2𝑟 + 1)2 is the
total number of feature points in Qn. The NSM is dened as:

p𝑠𝑖𝑚 = SoMax(Qn · q𝑇 ), (1)

D𝐾𝐿 = 𝐾𝐿(p𝑢 | |p𝑠𝑖𝑚) =
𝑛𝑏∑
𝑖=1

𝑝𝑢 [𝑖 ] log
𝑝𝑠𝑖𝑚 [𝑖 ]
𝑝𝑢 [𝑖 ]

, (2)

D𝑐𝑜𝑠 =
1
𝑛𝑏

𝑛𝑏∑
𝑖=1

(1 −
Qn
[i] · q

𝑇

| |Qn
[i] | |2 | |q| |2

), (3)

D𝑁𝑆𝑀 = D𝐾𝐿 + D𝑐𝑜𝑠 , (4)
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Figure 2: The owchart of our Sparse Temporal Transformer (STT) method. For an input video clip, we rst adopt an encoder
to encode all the frames into their corresponding feature maps. Based on the feature map of current frame (query) and the
feature maps of previous frames (key), the selected query region in the current frame and selected key regions in the previous
frames are determined by our proposed query and key selection strategies. After that, we explore the temporal transformer to
capture the temporal relation. Finally, the output of the temporal transformer is sent to a decoder to obtain the segmentation
prediction. The NSM is short for Neighboring Similarity Matrix, which is used to identify complex regions.

where the p𝑢 ∈ R𝑛𝑏×1 is a uniform distribution. The rst termD𝐾𝐿

of NSM measures how close the similarity distribution p𝑠𝑖𝑚 is to
the uniform distribution p𝑢 . When this term is large, the similarities
between each feature point in Qn and the feature point q are quite
dierent and this feature point q is highly likely in the complex
regions. When this term is close to zero, we can only know that the
similarities between each feature point in Qn and the feature point
q are very close. But the similarities can be either very high or very
low. Therefore, the second term D𝑐𝑜𝑠 of NSM measures whether
the neighborhood Qn is similar to the feature point q.

Based on the denition of NSM, our proposed query selection
can be summarized as follows: 1) given the query feature map
Q and a neighborhood radius 𝑟 , we rst calculate the NSM for
all features points in the query feature map Q; 2) based on the
calculated NSM, we select the top-50% feature points with largest
D𝑁𝑆𝑀 from the query feature mapQ, which constructs the selected
query set Q̃ ∈ R

ℎ𝑤
2 ×1×𝑑𝑡 .

3.2.2 Key Selection. Inspired by NetWarp [20] and EFC [15] which
show that tracking the corresponding small regions in previous
frames can bring much useful temporal information to the current
frame, we propose to identify a small key region from every key
feature map for each selected query point. As we can see in Figure 1
(b), if we want to track the person and bike in the key frames,
it is unnecessary to search the whole frame of every key frames.
Instead, a more reasonable way is to enlarge the searching regions
gradually from near frame to far frame. Therefore, we design our
key selection strategy following two rules: 1) the key frame farther
from the current frame should have larger key region; 2) the size
of key regions should vary within a proper range.

Based on the above two rules, we design a simple and ecient
key selection strategy, which is decided by three hyper-parameters,

i.e., start size 𝑠 , end size 𝑒 , and expansion coecient 𝜖 . Formally,
the radius 𝑙𝑡 of key region in 𝑡-th key feature map K𝑡 is dened as:

𝑙𝑡 =

{
𝑠 + (𝑇 − 𝑡) ∗ 𝜖 , if 𝑠 + (𝑇 − 𝑡) ∗ 𝜖 < 𝑒;
𝑒 , otherwise.

(5)

For the 𝑡-th (𝑡 ∈ [1, 2, ..,𝑇 ]) key feature map K𝑡 (K1 represents the
farthest key feature map and K𝑇 represents the nearest key feature
map), the size of the key region will be (2𝑙𝑡 + 1)2 and the center of
the key region is decided by the coordinate of query point. Based on
the key selection strategy, the key selection can be summarized as:
1) for each key feature map K𝑡 , we rst calculate its corresponding
radius 𝑙𝑡 ∀ 𝑡 ∈ [1, ...,𝑇 ] of key region; 2) for each query point in
the selected query set Q̃, we identify its corresponding key region
in each key feature map K𝑡 based on the radius of key region 𝑙𝑡
and center coordinate (𝑢, 𝑣). 3) we aggregate all the key regions
over 𝑇 key frames for each query point to acquire the selected
key set K̃ ∈ R

ℎ𝑤
2 ×𝑛𝑘×𝑑𝑡 , where the accumulated key region size

𝑛𝑘 =
∑𝑇
𝑡=1 (2𝑙𝑡 + 1)2 and 𝑛𝑘 < 𝑇 (2𝑒 + 1)2.

After key selection, for each query point in the selected query
set Q̃, the size of key set is reduced from𝑂 (𝑇ℎ𝑤) to𝑂 (𝑇𝑒2), where
𝑒2 � ℎ𝑤 .

3.2.3 Temporal Transformer. The structure of the our temporal
transformer encoder is shown in Figure 2, which has a multi-head
attention layer and a feed-forward layer along with residual con-
nection and layer normalization. For our temporal transformer,
we adapt the transformer architecture as described by Vaswani et
al. [46] with key and query as dierent features to t into the re-
quirement of VSS, i.e. enabling the current frame to capture the
temporal relation from previous frames. Besides, in our setting,
the key and value is the selected key set K̃ ∈ R

ℎ𝑤
2 ×𝑛𝑘×𝑑𝑡 and the

selected query set Q̃ ∈ R
ℎ𝑤
2 ×1×𝑑𝑡 respectively.
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Method Backbone Cityscapes Camvid
mIoU (%) ↑ TC (%) ↑ fps (frame/s) ↑ mIoU (%) ↑ TC (%) ↑ fps (frame/s) ↑

NetWarp [20] ResNet101 80.6 - 0.3 67.1 - 2.8
DFF [61] ResNet101 68.7 71.4 9.7 - - -
GRFP [40] ResNet101 69.4 - 3.2 66.1 - 4.4
LVS [33] ResNet101 76.8 - 5.9 - - -
Accel [28] ResNet101/18 72.1 70.3 3.6 66.7 - 7.6

PSPNet18 [56] ResNet18 75.5 68.5 10.8 71.0 - 24.4
PSPNet50 [56] ResNet50 78.1 - 4.2 74.7 - 8.5
PSPNet101 [56] ResNet101 79.4 69.7 2.1 77.6 77.1 4.1

TDNet-PSP18 [25] ResNet18 76.8 70.4 11.8 72.6 73.2 25.2
TDNet-PSP50 [25] ResNet50 79.9 71.1 5.6 76.0 77.4 11.1
ETC-PSP18 [37] ResNet18 73.1 70.6 10.8 75.2 77.3 24.4
ETC-PSP101 [37] ResNet101 79.5 71.7 2.1 79.4 78.6 4.1

STT-PSP18 ResNet18 77.3 73.0 11.5 76.1 81.4 24.7
STT-PSP101 ResNet101 82.5 73.9 2.2 80.2 82.3 4.2

Table 1: We compare our methods with previous High-Quality Methods on both Cityscapes and Camvid. ↑ represents higher
value is better.

The multi-head attention is the core of our temporal transformer,
which is a dense operator that allows each query feature point in
selected query set to interact with its corresponding key features in
selected key set. In VSS, we use the multi-head attention to capture
long-range dependencies without recurrence, and it can be viewed
intuitively as a cross-correlation operator that uses CNN features
to capture the temporal relation within a period. Given the input
selected key set (K̃) and selected query set (Q̃), which contains ℎ𝑤2
query point and 𝑛𝑘 key points associated with each query point,
the multi-head attention can be formulated as:

H𝑗 = SoMax(
(Q̃W𝑄

𝑗
) (K̃W𝐾

𝑗
)𝑇√

𝑑

(K̃W𝑉
𝑗 )), (6)

𝑀𝐻 (Q̃, K̃) = [H1, ...H𝑗 , ...,Hnh ]W𝑂 , (7)

whereW𝑄

𝑗
∈ R𝑑𝑡×𝑑 ,W𝐾

𝑗
∈ R𝑑𝑡×𝑑 ,W𝑉

𝑗
∈ R𝑑𝑡×𝑑 are projection ma-

trices for 𝑗-th attention head with 𝑑 =
𝑑𝑡
𝑛ℎ

, W𝑂 ∈ R𝑑𝑡×𝑑𝑡 , [·, ..., ·]
represents concatenation, and𝑀𝐻 () is short for multi-head atten-
tion. The temporal transformer encoder is then formulated as:

X = 𝐿𝑁 (Q̃ +𝑀𝐻 (Q̃, K̃)), (8)
𝐹𝐹𝑁 (X) = max(0,XW1 + b1)W2 + b2, (9)

𝑇𝐹𝐸 (Q̃, K̃) = 𝐿𝑁 (X + 𝐹𝐹𝑁 (X)), (10)

where W1 ∈ R𝑑𝑡×𝑑 , b1 ∈ R1×𝑑 , W2 ∈ R𝑑×𝑑𝑡 , b2 ∈ R1×𝑑𝑡 , 𝐿𝑁 (),
𝐹𝐹𝑁 () and 𝑇𝐹𝐸 () are short for layer normalization, feed-forward
layer and transformer encoder.

For a vanilla temporal transformer (i.e., without the query selec-
tion and key selection strategy), the computational complexity is
𝑂 (𝑇ℎ2𝑤2), where all the key points in the key feature maps interact
with all the query points in the query feature map. After incorpo-
rating our proposed query selection and key selection strategies
into the temporal transformer, the time complexity of our STT is
successfully reduced to 𝑂 (𝑇ℎ𝑤𝑒2), where 𝑒 is a constant in our
experiment. To further reduce the computation of transformers, we
also reduce the feature dimension of the key, value and query from

Method Backbone mIoU (%) ↑ TC (%)↑ fps (frame/s) ↑
DVSNet [50] ResNet18 63.2 - 30.3
ICNet [55] ResNet50 67.7 - 50.0

LadderNet [31] DenseNet121 72.8 - 30.3
SwiftNet [41] ResNet18 75.4 - 43.5
BiSeNet18 [53] ResNet18 73.8 - 50.0
BiSeNet34 [53] ResNet34 76.0 - 37.0

TDNet-BiSe18 [25] ResNet18 75.0 70.2 47.6
TDNet-BiSe34 [25] ResNet34 76.4 71.1 38.5
ETC-Mobi [37] MobileNetV2 73.9 69.9 20.8
STT-BiSe18 ResNet18 75.8 71.4 44.2
STT-BiSe34 ResNet34 77.3 72.0 33.8

Table 2: We compare our method with previous High-Speed
Methods on Cityscapes. ↑ represents higher value is better.

𝑑𝑡 to 𝑑𝑡
4 with a multi-layer perceptron. Therefore, the nal time

complexity of our model is 𝑂 (𝑇ℎ𝑤).

4 EXPERIMENT
4.1 Experiment Setup
4.1.1 Dataset. We evaluate our method and all the other base-
lines on two benchmark video semantic segmentation datasets:
Cityscapes [11] and Camvid [2]. Detailed introduction of these two
datasets can be found in supplementary.

4.1.2 Evaluation Metrics. To compare our proposed method with
SOTA methods from both segmentation accuracy and temporal
consistency, we adopt the same evaluation metrics on both datasets
as ETC [37]. Specically, for segmentation accuracy, we adopt the
mean Intersection-over-Union (mIoU). for temporal consistency,
we employ TC following ETC [37], which measures the consistency
based on the mean ow warping error between all consecutive
frames (more details about the TC metric can be found in ETC [37]).

4.1.3 Models and Baselines. We demonstrate the eectiveness of
Sparse Temporal Transformer (STT) on dierent backbones. We
select two SOTA image segmentation models for our experiments:
PSPNet [56] and BiSeNet [53]. For the latter method, we compare
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SS (𝑠) ES (𝑒) EC (𝜖) key size mIoU (%) TC (%) fps (frame/s)
1 1 5 1 527 77.2 73.0 11.5
2 2 5 1 639 77.3 72.9 11.1
3 3 5 1 735 77.1 73.0 10.7
4 1 3 1 279 76.5 72.1 11.9
5 1 7 1 679 77.3 72.8 11.0
6 1 5 2 663 77.1 72.8 11.0
7 1 5 3 695 77.2 72.9 11.0
8 - - - 57344 75.1 69.9 0.2
Table 3: The eect of key selection strategy. The SS, ES, EC
represent the start size 𝑠, the end size 𝑒, and the expansion
coecient 𝜖, respectively. The key size means the accumu-
lated key region size, which is derived from SS, ES and EC. -
in the last row indicates that we use all the key features as
the selected keys.

with the modied version (BiSeNet*), which is from TDNet [25] and
claimed to have higher eciency and better training convergence.
For these two image segmentation backbones, we extend them by
plugging our STT module between the encoder part and decoder
part. We followed TDNet [25] to split the encoder part and decoder
part.

4.2 Comparison with Existing Methods
To verify the eectiveness of our method, we compare it with
the SOTA methods on Cityscapes [11] and Camvid [2]. Following
TDNet[25], the compared methods can be divided into two groups,
one group (High-Speed Methods) has strength in inference speed
while the other group (High-Quality Methods) has better segmenta-
tion accuracy. We compare our method with two groups of methods
to prove that our method can achieve high segmentation accuracy
with comparable inference speed.

4.2.1 Comparison with High-ality Methods. Considering high
segmentation accuracy (mIoU) and temporal consistency (TC), we
choose PSPNet [56] as our base model. We evaluate our STTmethod
based on PSPNet18 and PSPNet101 respectively, and compare them
with NetWarp [20], DFF [61], GRFP [40], LVS [33], Accel [28], PSP-
Net [56], TDNet [25], and ETC [37]. The results tested on Cityscapes
validation set and Camvid testset are all summarized in Table 1. It
can be seen that all our STT based models outperform other High-
Quality Methods on segmentation accuracy metrics (mIoU and TC).
The TC of TDNet-PSP18 and TDNet-PSP50 is measured based on
their released code and trained parameters. The TC and mIoU of
other baselines are directly copied from ETC [37] or TDNet [25].
Higher performance will be selected when the experiment results
of baselines are reported dierently in these two paper. Among
them, our STT-PSP101 model obtains the highest segmentation
accuracy (mIoU and TC), in which mIoU is 82.5% and TC is 73.9%.
Note that although NetWarp has the second highest mIoU, it has
the lowest fps which is far lower than other methods. Beneting
from the usage of temporal transformer, our method can capture
the temporal relation among consecutive frames eectively without
the optical ow estimation error existing in ow-based methods.

4.2.2 Comparison with High-Speed Methods. Concentrating on
model eciency (mIoU and fps), we choose BiSeNet [56] as our

NR (𝑟 ) TR mIoU (%) TC (%) fps (frame/s)
1 1 50 % 76.1 71.2 11.5
2 3 50 % 77.1 72.8 11.5
3 5 50 % 77.3 73.0 11.5
4 7 50 % 77.2 72.9 11.5
5 9 50 % 76.8 72.1 11.5
6 5 0 % 75.3 68.7 13.6
7 5 25 % 76.7 72.4 12.6
8 5 75 % 77.3 72.7 10.5
9 5 100 % 77.2 72.9 9.4

Table 4: The eect of query selection strategy. NR and TR
represent the neighborhood radius and selection top-ratio.

base model. We evaluate our STT method based on BiSeNet18 and
BiSeNet34 respectively, and compare them with DVSNet [50], IC-
Net [55], LadderNet [31], SwiftNet [41], BiSeNet [53], TDNet [25],
and ETC [37]. The results tested on Cityscapes validation set are
all summarized in Table 2. The TC of TDNet-BiSe18 and TDNet-
BiSe34 is measured based on their released code and trained param-
eters. The TC and mIoU of other baselines are directly copied from
ETC [37] or TDNet [25]. It can be seen our STT method has an
advantage over other High-Speed Methods on mIoU while also has
a comparable inference speed. Our STT-BiSe34 model obtains best
performance over other methods, which mIoU is 77.3% and fps is
33.8 frame/s. We realize a better balance on segmentation accuracy
and inference speed compared to other High-Speed Methods. Based
on key selection and query selection, we eectively reduce the
time complexity in transformer from 𝑂 (𝑇ℎ2𝑤2) to 𝑂 (𝑇ℎ𝑤) which
brings great promotion to our model on inference time.

4.3 Ablation Study
In this section, we study the eect of key selection and query se-
lection. All the experiments in this section are conducted on the
Cityscapes [11] dataset with the STT-PSP18. More ablation stud-
ies about the eect of the number of key frames can be found in
supplementary.

4.3.1 Eect of key selection. In this section, we study the eect of
dierent key selection strategy, where the start size, end size and the
expansion coecient represent theminimal searching region for the
nearest frame, the maximum searching region for the farthest frame
and how fast we enlarge the searching region, respectively. Table 3
shows the eect of these three hyper-parameters. From row 1, 2
and 3, we can nd that starting from a larger searching region does
not improve the segmentation accuracy or temporal consistency
signicantly, however, the inference speed gets slower. From row
1, 4 and 5, we can nd that 5 is a better choice for the maximum
search regions, since smaller maximum search regions (row 4) may
lter out some semantic objects and larger choice (row 5) would
harm the inference speed without much improvement. From row
1, 6 and 7, we nd that expansion coecient does not aect the
segmentation accuracy or temporal consistency signicantly. For
the concern of speed, we choose 1 as the expansion coecient in
our experiment. Besides, comparing the rst row and the last row,
we nd that all evaluation metrics drop without our key selection
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Figure 3: The segmentation results of our method compared with two baseline methods, i.e., TDNet [25] and ETC [37]. On the
top part, we show full-size segmentation results of frame 𝐹𝑡 . For better visualization, we zoom the region in the red and orange
box across 3 frames in the bottom part of gure. In the red boxes, our model is able to generate more consistent semantic label
to the edge of the streetlight and moving trolleybus. In the orange boxes, our model is able to generate more ne-grained and
stable results (e.g., bicycle) across frames compared with the baseline methods.

strategy. For the performance (mIoU and TC) drop, we suspect
that the huge key size prevents the model from getting converged
within 80k iterations. Besides, the huge key size also introduces lots
of noise from dissimilar regions. For the speed (fps) drop, the key
size in the last row is one hundred times larger than that in the rst
row, which will surely decrease the inference speed signicantly.

4.3.2 Eect of query selection. In this section, we study the eect
of dierent query selection strategies. The neighborhood radius
(NR) represents the neighborhood size to be considered when se-
lecting the query features. The selection top-ratio (TR) represents
the area ratio in each frame which should be considered as com-
plex region. The results are summarized in Table 4. From row 1-5,
we nd that choosing the neighboring radius in a proper region
(e.g., 3-7) will not aect the query selection largely. However, if
the neighborhood radius is too small (1) or too large (9), complex
region and simple region may also be confused, which will weaken
the representation of complex regions. From row 1, 6, 7 and 8, we
can nd that the more features we selected from the query feature
map Q, the better segmentation accuracy and temporal consistency
we will get. Whereas, when the selection top-ratio is beyond 50%,
we nd that the improvement in segmentation accuracy and tem-
poral consistency is quite limited. To balance the performance and
inference speed, we choose top-50% query feature from the query
feature map (Q) as the selected query set (Q̃).

4.4 Case Study
In this section, we show the segmentation results of our method.
More cases about the visualization of attention map between se-
lected query and key and the query selection is in supplementary.

We select two representative baselines (TDNet [25] and ETC [37])
for qualitative comparisons. Following TDNet [25] and ETC [37],
we employ all three segmentation models based on PSPNet18 [56]
for visualization in Fig 3. It can be seen our proposed method can
assign more consistent labels to the moving objects and generate
more accurate segmentation results. More visualization results can
be found in the supplementary.

5 CONCLUSION
In this paper, we have studied the video semantic segmentation from
a new viewpoint, i.e., capturing the temporal relation across frames
by temporal transformer, where the current frame and previous
frames are taken as the query and key. To balance the segmen-
tation performance and inference speed, we have proposed two
feature selection strategies, i.e., query selection and key selection
to reduce the time complexity of our temporal transformer signif-
icantly. Comprehensive experiments on two benchmark datasets
have demonstrated that our method remarkably outperforms the
SOTA approaches with comparable inference speed.
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